The phenomenal rate of increase in the integration density of silicon chips has been sustained in large part by advances in optical lithography--the process that patterns and guides the fabrication of the component semiconductor devices and circuitry. Although the introduction of shorter-wavelength light sources and resolution-enhancement techniques should help maintain the current rate of device miniaturization for several more years, a point will be reached where optical lithography can no longer attain the required feature sizes. Several alternative lithographic techniques under development have the capability to overcome these resolution limits but, at present, no obvious successor to optical lithography has emerged.
A resistive-pulse Coulter counter based on a membrane containing a single multiwall carbon nanotube (MWNT) channel was used to simultaneously determine the size and surface charge of carboxy-terminated polystyrene nanoparticles. The membrane was prepared from an epoxy section containing a MWNT channel mounted on a poly(dimethylsiloxane) (PDMS) support structure. The PDMS support reduced the background noise level by a factor of > 20 compared to the Si/Si3N4 support structure used in our previous study. The lower noise level makes it possible to accurately measure the height and width of resistive-pulse signals resulting from transport of individual particles through the MWNT channel. Particle sizes, calculated from current pulse heights, were comparable to those determined by transmission electron microscope (TEM). The width of the current pulses is a measure of the nanoparticle transport time, and it permits calculation of the electrokinetic surface charge. Different types of polystyrene nanoparticles having nearly the same size, but different electrokinetic surface charge, could be resolved on the basis of the difference in their transport time.
This review discusses recent advances in the science and technology of Coulter counting. The Coulter counting principle has been used to determine the size, concentration, and in favorable cases the surface charge, of nanometer-scale colloidal particles, viruses, DNA and other polymers, and metal ions. A resurgence of interest in the field of COulter counting is occurring because of the advent of new technologies that permit fabrication of membranes containing single, robust, and chemically well-defined channels having smaller and more uniform sizes than could be prepared in the past. These channels are prepared from biological materials, such as self-assembling membrane proteins, and from synthetic materials such as polymers, carbon nanotubes, and silicon-based inorganic materials. In addition to particle characterization, there have been a few recent examples of using Coulter counters to study chemical processes, such as the dehybridization of DNA.
The precision and accuracy of measurements of the diameter and electrophoretic mobility (mu) of polymeric nanoparticles is compared using four different analytical approaches: carbon-nanotube-based Coulter counting, dynamic light scattering (DLS), transmission electron microscopy (TEM), and phase analysis light scattering (PALS). Carbon-nanotube-based Coulter counters (CNCCs) use a 132 nm diameter channel to simultaneously determine the diameter (28-90 nm) and mu value for individual nanoparticles. These measurements are made without calibration of the CNCC and without labeling the sample. Moreover, because CNCCs measure the properties of individual particles, they provide true averages and polydispersities that are not convoluted into the intrinsic instrumental response function of the CNCC. CNCCs can be used to measure the size of individual nanoparticles dispersed in aqueous solutions, which contrasts with the TEM-measured size of individual dehydrated particles and the ensemble size averages of dispersed particles provided by DLS. CNCCs provide more precise values of mu than PALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.