Background: The detection of SARS-CoV-2 RNA by real-time reverse transcription-polymerase chain reaction (rRT-PCR) is used to confirm the clinical diagnosis of COVID-19 by molecular diagnostic laboratories. We developed a multiplex rRT-PCR methodology for the detection of SARS-CoV-2 RNA. Methods: Three genes were used for multiplex rRT-PCR: the Sarbecovirus specific E gene, the SARS-CoV-2 specific N gene, and the human ABL1 gene as an internal control. Results: Good correlation of C q values was observed between the simplex and multiplex rRT-PCR methodologies. Low copies (< 25 copies/reaction) of SARS-CoV-2 RNA were detected by the novel multiplex rRT-PCR method.
Conclusion:The proposed multiplex rRT-PCR methodology will enable highly sensitive detection of SARS-CoV-2 RNA, reducing reagent use and cost, and time required by clinical laboratory technicians.
This study provides Class II evidence that levels of serum anti-moesin antibodies accurately distinguishes CMV-related AIDP from non-CMV-related AIDP (sensitivity 83%, specificity 93%).
BackgroundNonalcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which carries a significant risk of progression to cirrhosis and hepatocellular carcinoma. Since NASH is a progressive but reversible condition, it is desirable to distinguish NASH from simple steatosis, and to treat NASH patients at an early stage. To establish appropriate diagnosis and therapy, the pathological mechanisms of the disease should be elucidated; however, these have not been fully clarified for both NASH and simple steatosis. This study aims to reveal the differences between simple steatosis and NASH.MethodsThis study used fatty liver Shionogi (FLS) mice as a NASH model, for comparison with dd Shionogi (DS) mice as a model of simple steatosis. Genome-wide gene expression analysis was performed using Affymetrix GeneChip Mouse Genome 430 2.0 Array, which contains 45101 probe sets for known and predicted genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to investigate gene expression changes and protein localizations.ResultsDNA microarray analysis of the liver transcriptomes and qRT-PCR of both types of mice revealed that LCN2, CXCL1 and CXCL9 mRNAs were overexpressed in FLS mouse livers. Immunohistochemistry showed that CXCL1 protein was mainly localized to steatotic hepatocytes. CXCL9 protein-expressing hepatocytes and sinusoidal endothelium were localized in some areas of inflammatory cell infiltration. Most interestingly, hepatocytes expressing LCN2, a kind of adipokine, were localized around almost all inflammatory cell clusters. Furthermore, there was a positive correlation between the number of LCN2-positive hepatocytes in the specimen and the number of inflammatory foci.ConclusionsOverexpression and distinct localization of LCN2, CXCL1 and CXCL9 in the liver of fatty liver Shionogi mice suggest significant roles of these proteins in the pathogenesis of NASH.
Gastric cancer is classified into two subtypes, diffuse and intestinal. The diffuse-type gastric cancer (DGC) has poorer prognosis, and the molecular pathology is not yet fully understood. The purpose of this study was to identify functional secreted molecules involved in DGC progression. We integrated the secretomics of six gastric cancer cell lines and gene expression analysis of gastric cancer tissues with publicly available microarray data. Hierarchical clustering revealed characteristic gene expression differences between diffuse- and intestinal-types. GDF15 was selected as a functional secreted molecule owing to high expression only in fetal tissues. Protein expression of GDF15 was higher in DGC cell lines and tissues. Serum levels of GDF15 were significant higher in DGC patients as compared with healthy individuals and chronic gastritis patients, and positively correlated with wall invasion and lymph node metastasis. In addition, the stimulation of GDF15 on NIH3T3 fibroblast enhanced proliferation and up-regulated expression of extracellular matrix genes, which were similar to TGF-β stimulation. These results indicate that GDF15 contributes to fibroblast activation. In conclusion, this study revealed that GDF15 may be a novel functional secreted molecule for DGC progression, possibly having important roles for cancer progression via the affecting fibroblast function, as well as TGF-β.
Methicillin-resistant Staphylococcus aureus MRSA is one of the major pathogens responsible for nosocomial infections. The presence of MRSA in a hospital is detrimental to patients and to hospital management. Thus, rapid identification of MRSA is needed. Here, we report on a prospective method to rapidly discriminate of MSSA from MRSA using matrix-assisted laser desorption ionization-time of flight mass spectrometry MALDI-TOF MS and support vector machine SVM analysis in 160 clinical isolates of S. aureus. The predictive model was tested using 100 S. aureus isolates 50 MSSA and 50 MRSA . The identification rates were 90.0% for MSSA and 87.5% for MRSA in a 10-fold cross-validation SVM. In blind test sets, 60 S. aureus isolates 30 MSSA and 30 MRSA were correctly classified, with identification rates of 93.3% for MSSA and 86.7% for MRSA. The method proposed in this study using the predictive model enables detection of one colony in 5 minutes, and thus is useful at clinical sites at which rapid discrimination of MRSA from MSSA is required.Key words Rapid discrimination / MSSA / MRSA / MALDI-TOF MS / MALDI BioTyper software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.