Shape memory alloys recover their original shape after deformation, making them useful for a variety of specialized applications. Superelastic behavior begins at the critical stress, which tends to increase with increasing temperature for metal shape memory alloys. Temperature dependence is a common feature that often restricts the use of metal shape memory alloys in applications. We discovered an iron-based superelastic alloy system in which the critical stress can be optimized. Our Fe-Mn-Al-Cr-Ni alloys have a controllable temperature dependence that goes from positive to negative, depending on the chromium content. This phenomenon includes a temperature-invariant stress dependence. This behavior is highly desirable for a range of outer space–based and other applications that involve large temperature fluctuations.
Vapor compression technologies widely used for refrigeration, heating, and air-conditioning have consumed a large fraction of global energy. Efforts have been made to improve the efficiency to save the energy, and to search for new refrigerants to take the place of the ones with high global warming potentials. The solid-state refrigeration using caloric materials are regarded as high-efficiency and environmentally friendly technologies. Among them, the elastocaloric refrigeration using shape memory alloys has been evaluated as the most promising one due to its low device cost and less of a demand for an ambient environment. General caloric materials heat up and cool down when external fields are applied and removed adiabatically (conventional caloric effect), while a few materials show opposite temperature changes (inverse caloric effect). Previously reported shape memory alloys have been found to show either a conventional or an inverse elastocaloric effect by the latent heat during uniaxial-stress-induced martensitic transformation. In this paper, we report a self-regulating functional material whose behavior exhibits an elastocaloric switching effect in Co-Cr-Al-Si Heusler-type shape memory alloys. For a fixed alloy composition, these alloys can change from conventional to inverse elastocaloric effects because of the change in ambient temperature. This unique behavior is caused by the sign reversal of latent heat from conventional to the re-entrant martensitic transformation. The realization of the elastocaloric switching effect can open new possibilities of system design for solid-state refrigeration and temperature sensors.
Crystalline metals can have large theoretical elastic strain limits. However, a macroscopic block of conventional crystalline metals practically suffers a very limited elastic deformation of <0.5% with a linear stress–strain relationship obeying Hooke’s law. Here, we report on the experimental observation of a large tensile elastic deformation with an elastic strain of >4.3% in a Cu-based single crystalline alloy at its bulk scale at room temperature. The large macroscopic elastic strain that originates from the reversible lattice strain of a single phase is demonstrated by in situ microstructure and neutron diffraction observations. Furthermore, the elastic reversible deformation, which is nonhysteretic and quasilinear, is associated with a pronounced elastic softening phenomenon. The increase in the stress gives rise to a reduced Young’s modulus, unlike the traditional Hooke’s law behaviour. The experimental discovery of a non-Hookean large elastic deformation offers the potential for the development of bulk crystalline metals as high-performance mechanical springs or for new applications via “elastic strain engineering.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.