The HY1 locus of Arabidopsis is necessary for phytochrome chromophore biosynthesis and is defined by mutants that show a long hypocotyl phenotype when grown in the light. We describe here the molecular cloning of the HY1 gene by using chromosome walking and mutant complementation. The product of the HY1 gene shows significant similarity to animal heme oxygenases and contains a possible transit peptide for transport to plastids. Heme oxygenase activity was detected in the HY1 protein expressed in Escherichia coli. Heme oxygenase catalyzes the oxygenation of heme to biliverdin, an activity that is necessary for phytochrome chromophore biosynthesis. The predicted transit peptide is sufficient to transport the green fluorescent protein into chloroplasts. The accumulation of the HY1 protein in plastids was detected by using immunoblot analysis with an anti-HY1 antiserum. These results indicate that the Arabidopsis HY1 gene encodes a plastid heme oxygenase necessary for phytochrome chromophore biosynthesis.
The HY1 gene of Arabidopsis encodes a plastid heme oxygenase (AtHO1) required for the synthesis of the chromophore of the phytochrome family of plant photoreceptors. To determine the enzymatic properties of plant heme oxygenases, we have expressed the HY1 gene (without the plastid transit peptide) in Escherichia coli to produce an amino terminal fusion protein between AtHO1 and glutathione S-transferase. The fusion protein was soluble and expressed at high levels. Purified recombinant AtHO1, after glutathione S-transferase cleavage, is a hemoprotein that forms a 1:1 complex with heme. In the presence of reduced ferredoxin, AtHO1 catalyzed the formation of biliverdin IX␣ from heme with the concomitant production of carbon monoxide. Heme oxygenase activity could also be reconstituted using photoreduced ferredoxin generated through light irradiation of isolated thylakoid membranes, suggesting that ferredoxin may be the electron donor in vivo. In addition, AtHO1 required an iron chelator and second reductant, such as ascorbate, for full activity. These results show that the basic mechanism of heme cleavage has been conserved between plants and other organisms even though the function, subcellular localization, and cofactor requirements of heme oxygenases differ substantially.
The HY1 locus of Arabidopsis is necessary for phytochrome chromophore biosynthesis and is defined by mutants that show a long hypocotyl phenotype when grown in the light. We describe here the molecular cloning of the HY1 gene by using chromosome walking and mutant complementation. The product of the HY1 gene shows significant similarity to animal heme oxygenases and contains a possible transit peptide for transport to plastids. Heme oxygenase activity was detected in the HY1 protein expressed in Escherichia coli. Heme oxygenase catalyzes the oxygenation of heme to biliverdin, an activity that is necessary for phytochrome chromophore biosynthesis. The predicted transit peptide is sufficient to transport the green fluorescent protein into chloroplasts. The accumulation of the HY1 protein in plastids was detected by using immunoblot analysis with an anti-HY1 antiserum. These results indicate that the Arabidopsis HY1 gene encodes a plastid heme oxygenase necessary for phytochrome chromophore biosynthesis.
The aurea mutants of tomato have been widely used as phytochrome-deficient mutants for photomorphogenetic and photobiological studies. By expressed sequence tag (EST)-based screening of sequence databases, we found a tomato gene that encodes a protein homologous to Arabidopsis HY2 for phytochromobilin synthase catalyzing the last step of phytochrome chromophore biosynthesis. The tomato protein expressed in Escherichia coli showed phytochromobilin synthase activity. The corresponding loci in all aurea mutants tested have nucleotide substitutions, deletions or DNA rearrangements. These results indicate that aurea is a mutant of phytochromobilin synthase in tomato. We also discuss a phylogenetic analysis of phytochromobilin synthases in the bilin reductase family.
The covalently bound phytochromobilin (P⌽B) prosthetic group is required for the diverse photoregulatory activities of all members of the phytochrome family in vascular plants, whereas by contrast, green algal and cyanobacterial phytochromes use the more reduced linear tetrapyrrole pigment phycocyanobilin (PCB). To assess the functional consequence of the substitution of P⌽B with PCB in plants, the phytochrome chromophore-deficient hy2 mutant of Arabidopsis was transformed with a constitutively expressed pcyA gene that encodes the cyanobacterial enzyme, PCB:ferredoxin oxidoreductase. Spectroscopic analyses of extracts from etiolated seedlings revealed that PcyA expression restored photoactive phytochrome to WT levels, albeit with blue-shifted absorption maxima, while also restoring light lability to phytochrome A. Photobiological measurements indicated that PcyA expression rescued phytochrome-mediated red high-irradiance responses, lowfluence red͞far-red (FR) photoreversible responses, and very-lowfluence responses, thus confirming that PCB can functionally substitute for P⌽B for these photoregulatory activities. Although PcyA expression failed to rescue phytochrome A-mediated FR high-irradiance responsivity to that of WT, our studies indicate that the FR high-irradiance response is fully functional in pcyA-expressing plants but shifted to shorter wavelengths, indicating that PCB can functionally complement this phytochrome-mediated response in vascular plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.