In this review, we are pitting two theories against each other: the more accepted theory, the number sense theory, suggesting that a sense of number is innate and non-symbolic numerosity is being processed independently of continuous magnitudes (e.g., size, area, and density); and the newly emerging theory suggesting that (1) both numerosities and continuous magnitudes are processed holistically when comparing numerosities and (2) a sense of number might not be innate. In the first part of this review, we discuss the number sense theory. Against this background, we demonstrate how the natural correlation between numerosities and continuous magnitudes makes it nearly impossible to study non-symbolic numerosity processing in isolation from continuous magnitudes, and therefore, the results of behavioral and imaging studies with infants, adults, and animals can be explained, at least in part, by relying on continuous magnitudes. In the second part, we explain the sense of magnitude theory and review studies that directly demonstrate that continuous magnitudes are more automatic and basic than numerosities. Finally, we present outstanding questions. Our conclusion is that there is not enough convincing evidence to support the number sense theory anymore. Therefore, we encourage researchers not to assume that number sense is simply innate, but to put this hypothesis to the test and consider whether such an assumption is even testable in the light of the correlation of numerosity and continuous magnitudes.
How do numerical symbols, such as number words, acquire semantic meaning? This question, also referred to as the "symbol-grounding problem," is a central problem in the field of numerical cognition. Present theories suggest that symbols acquire their meaning by being mapped onto an approximate system for the nonsymbolic representation of number (Approximate Number System or ANS). In the present literature review, we first asked to which extent current behavioural and neuroimaging data support this theory, and second, to which extent the ANS, upon which symbolic numbers are assumed to be grounded, is numerical in nature. We conclude that (a) current evidence that has examined the association between the ANS and number symbols does not support the notion that number symbols are grounded in the ANS and (b) given the strong correlation between numerosity and continuous variables in nonsymbolic number processing tasks, it is next to impossible to measure the pure association between symbolic and nonsymbolic numerosity. Instead, it is clear that significant cognitive control resources are required to disambiguate numerical from continuous variables during nonsymbolic number processing. Thus, if there exists any mapping between the ANS and symbolic number, then this process of association must be mediated by cognitive control. Taken together, we suggest that studying the role of both cognitive control and continuous variables in numerosity comparison tasks will provide a more complete picture of the symbol-grounding problem.
Dot arrays are often used to study basic numerical skills across cultures, species and development. Researchers investigate the ability of subjects to discriminate between dot arrays, as a function of the ratio or distance between their numerosities. Such studies have contributed significantly to the number sense theory (i.e., that humans are born with the ability to process numerosities, and share this ability with various species)—possibly the most influential theory in numerical cognition literature today. However, a dot array contains, in addition to numerosity, continuous properties such as the total surface area of the dots, their density, etc. These properties are highly correlated with numerosity and therefore might influence participants' performance. Different ways in which different studies choose to deal with this confound sometimes lead to contradicting results, and in our opinion, do not completely eliminate the confound. In this work, we review these studies and suggest several possible reasons for the contradictions in the literature. We also suggest that studying continuous properties, instead of just trying to control them, may contribute to unraveling the building blocks of numerical abilities.
Non-symbolic stimuli (i.e., dot arrays) are commonly used to study numerical cognition. However, in addition to numerosity, non-symbolic stimuli entail continuous magnitudes (e.g., total surface area, convex-hull, etc.) that correlate with numerosity. Several methods for controlling for continuous magnitudes have been suggested, all with the same underlying rationale: disassociating numerosity from continuous magnitudes. However, the different continuous magnitudes do not fully correlate; therefore, it is impossible to disassociate them completely from numerosity. Moreover, relying on a specific continuous magnitude in order to create this disassociation may end up in increasing or decreasing numerosity saliency, pushing subjects to rely on it more or less, respectively. Here, we put forward a taxonomy depicting the relations between the different continuous magnitudes. We use this taxonomy to introduce a new method with a complimentary Matlab toolbox that allows disassociating numerosity from continuous magnitudes and equating the ratio of the continuous magnitudes to the ratio of the numerosity in order to balance the saliency of numerosity and continuous magnitudes. A dot array comparison experiment in the subitizing range showed the utility of this method. Equating different continuous magnitudes yielded different results. Importantly, equating the convex hull ratio to the numerical ratio resulted in similar interference of numerical and continuous magnitudes.
The approximate number system (ANS) theory suggests that all magnitudes, discrete (i.e., number of items) or continuous (i.e., size, density, etc.), are processed by a shared system and comply with Weber's law. The current study reexamined this notion by comparing performance in discrete (comparing numerosities of dot arrays) and continuous (comparisons of area of squares) tasks. We found that: (a) threshold of discrimination was higher for continuous than for discrete comparisons; (b) while performance in the discrete task complied with Weber's law, performance in the continuous task violated it; and (c) performance in the discrete task was influenced by continuous properties (e.g., dot density, dot cumulative area) of the dot array that were not predictive of numerosities or task relevant. Therefore, we propose that the magnitude processing system (MPS) is actually divided into separate (yet interactive) systems for discrete and continuous magnitude processing. Further subdivisions are discussed. We argue that cooperation between these systems results in a holistic comparison of magnitudes, one that takes into account continuous properties in addition to numerosities. Considering the MPS as two systems opens the door to new and important questions that shed light on both normal and impaired development of the numerical system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.