Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3 pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making them potent candidates for drug target.
Entamoeba histolytica is an invasive, pathogenic parasite causing amoebiasis. Given that proteins involved in transmembrane (TM) transport are crucial for the adherence, invasion, and nutrition of the parasite, we conducted a genome-wide bioinformatics analysis of encoding proteins to functionally classify and characterize all the TM proteins in E. histolytica. In the present study, 692 TM proteins have been identified, of which 546 are TM transporters. For the first time, we report a set of 141 uncharacterized proteins predicted as TM transporters. The percentage of TM proteins was found to be lower in comparison to the free-living eukaryotes, due to the extracellular nature and functional diversification of the TM proteins. The number of multi-pass proteins is larger than the single-pass proteins; though both have their own significance in parasitism, multi-pass proteins are more extensively required as these are involved in acquiring nutrition and for ion transport, while single-pass proteins are only required at the time of inciting infection. Overall, this intestinal parasite implements multiple mechanisms for establishing infection, obtaining nutrition, and adapting itself to the new host environment. A classification of the repertoire of TM transporters in the present study augments several hints on potential methods of targeting the parasite for therapeutic benefits.
Abstract:Avian influenza is an infectious disease of birds caused by type-A strains of the influenza virus. The unprecedented spread of the highly pathogenic avian influenza type A is a threat to veterinary and human health. Influenza viruses continuously undergo mutations and they lack proofreading mechanism. Hence, they evolve to new forms of the virus. We describe MAP MUTATION (developed using PERL script) to quickly compare two strains and display mutational information and report specific positions where mutation has occurred.
Availability:The PERL script is available from the authors for non-commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.