When hearing fails, electrical cochlear implants (eCIs) provide the brain with auditory information. One important bottleneck of CIs is the poor spectral selectivity that results from the wide current spread from each of the electrode contacts. Optical CIs (oCIs) promise to make better use of the tonotopic order of spiral ganglion neurons (SGNs) inside the cochlea by spatially confined stimulation. Here, we established multichannel oCIs based on light-emitting diode (LED) arrays and used them for optical stimulation of channelrhodopsin (ChR)−expressing SGNs in rodents. Power-efficient blue LED chips were integrated onto microfabricated 15-μm-thin polyimide-based carriers comprising interconnecting lines to address individual LEDs by a stationary or mobile driver circuitry. We extensively characterized the optoelectronic, thermal, and mechanical properties of the oCIs and demonstrated stability over weeks in vitro. We then implanted the oCIs into ChR-expressing rats and gerbils, and characterized multichannel optogenetic SGN stimulation by electrophysiological and behavioral experiments. Improved spectral selectivity was directly demonstrated by recordings from the auditory midbrain. Long-term experiments in deafened ChR-expressing rats and in nontreated control animals demonstrated specificity of optogenetic stimulation. Behavioral studies on animals carrying a wireless oCI sound processor revealed auditory percepts. This study demonstrates hearing restoration with improved spectral selectivity by an LED-based multichannel oCI system.
Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby re‐connecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virus‐mediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multi‐channel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thin‐film light‐emitting diodes (μLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of μLED‐based oCIs for spectrally selective activation of the auditory nerve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.