Dengue fever is a life-threatening illness that affects both industrialized and poor nations, including Pakistan. It is necessary to forecast the illness at an early stage to avoid it. Machine Learning (ML) methods outperform other computer approaches in terms of illness prediction. The model utilized in this study to predict dengue fever is fused with machine learning. Artificial Neural Networks (ANN) and Support Vector Machine (SVM) provide the foundation of the conceptual framework. The datasets employed in these models have been collected from a government hospital in Lahore, Pakistan for diagnosing dengue fever (positive or negative). 70% of the statistics in the dataset are training data, whereas 30% are testing data. This fused model's membership functions explain whether a dengue diagnostic is positive or negative, which controls the model's output. A cloud storage system saves the fused model based on patients' real-time information for future use. The proposed model has a 96.19 % accuracy rate, which is much greater than earlier research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.