The extensive use of the pump as a turbine (PAT) for micro-hydropower applications has a significant value from economic and technical viewpoints. However, the unavailability of the characteristics curve and relatively lower efficiency are the two basic limitations when considering pumps for power-generating applications. In this paper, the performance of the PAT is analyzed using the computational fluid dynamics (CFD) software called Ansys CFX in conjunction with standard
k
-
ε
. Then, experiments were done to verify the results of the simulation. Measurement inaccuracy effects are also taken into account. The initial performance of the PAT is refined by controlling basic design parameters (i.e., increasing the number of impeller blades, decreasing blade thickness, blade tip rounding, and adjusting blade inlet angle). Additionally, a new modification method known as blade grooving is also introduced in this research. Finally, all listed modification techniques are applied simultaneously to achieve maximum performance. The output of the study confirms that the adopted modification techniques have a positive effect on performance improvement. When the number of impellers is increased, the power output is enhanced by 5.72%, and blade grooving provides the most efficiency improvement, i.e., 7.00%. But decreasing blade thickness has no remarkable impact on the performance; the power output and efficiency are improved by 1.24% and 2.60%, respectively. The maximum performance improvement was achieved when the modification techniques are applied simultaneously with 10.56 and 10.20 percent of power and efficiency increments, respectively. From the entire study, it can be concluded that the chosen design parameters have an important effect on stabilizing the internal flow, decreasing the required head, decreasing the hydraulic loss in the impeller, and increasing the overall performance. The study also helps to figure out which modification technique is the most practical.
The case study presents a lifetime cost benefit analysis for RET evacuated tube SWH comparing with EWH for domestic hot water production. The study is important to show the SWH technology is competitive, strengthen local electric use capacity and to stimulate acceptance of the solar technology in Ethiopia. To accomplish the study, conduct thermal performance test of imported RET evacuated tube SWH in order to see the feasibility with current condition of Addis Ababa. And analyze lifetime cost benefit of proposed RET Evacuated tube SWH and compare with commonly used EWH to show technical and economic advantages. In Addis Ababa, home builders and commercial sectors has alternatives of installing SWH and purchase EWH. However, from technical comparison study SWH has an advantage of improve energy security and risk management; reduce the use of electricity; reduce the GHG emissions; improve the quality of life through renewable energy; less payback period over EWH. Similarly, the breakeven analysis confirms that the life cycle save is about 1414.06 ETB and 943.36 ETB per year from electricity bill without considering maintenance and other exploitations, and SWH is profitable less than 6 and 14 years by installing SWH rather than using electrical storage type boiler and instant water heater respectively. In the long run, home builders are both technically and economically beneficial to install SWH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.