Al-doped ZnO (AZO) thin films have been prepared by mist chemical vapor deposition and magnetron sputtering. The band gap shift as a function of carrier concentration in n-type zinc oxide (ZnO) was systematically studied considering the available theoretical models. The shift in energy gap, evaluated from optical absorption spectra, did not depend on sample preparations; it was mainly related to the carrier concentrations and so intrinsic to AZO. The optical gap increased with the electron concentration approximately as ne2∕3 for ne≤4.2×1019 cm−3, which could be fully interpreted by a modified Burstein–Moss (BM) shift with the nonparabolicity of the conduction band. A sudden decrease in energy gap occurred at 5.4−8.4×1019 cm−3, consistent with the Mott criterion for a semiconductor-metal transition. Above the critical values, the band gap increased again at a different rate, which was presumably due to the competing BM band-filling and band gap renormalization effects, the former inducing a band gap widening and the latter an offsetting narrowing. The band gap narrowing (ΔEBGN) derived from the band gap renormalization effect did not show a good ne1∕3 dependence predicated by a weakly interacting electron-gas model, but it was in excellent agreement with a perturbation theory considering different many-body effects. Based on this theory a simple expression, ΔEBGN=Ane1∕3+Bne1∕4+Cne1∕2, was deduced for n-type ZnO, as well as p-type ZnO, with detailed values of A, B, and C coefficients. An empirical relation once proposed for heavily doped Si could also be used to describe well this gap narrowing in AZO.
The clinical phenotype of familial ATTR amyloidosis depends to some extent on the particular mutation, but differences exist also within mutations. We have previously described that two types of amyloid fibril compositions exist among Swedish ATTRV30M amyloidosis patients, one consisting of a mixture of intact and fragmented ATTR (type A) and one consisting of mainly intact ATTR (type B). The fibril types are correlated to phenotypic differences. Patients with ATTR fragments have a late onset and develop cardiomyopathy, while patients without fragments have an early onset and less myocardial involvement. The present study aimed to determine whether this correlation between fibril type and phenotype is valid for familial ATTR amyloidosis in general. Cardiac or adipose tissues from 63 patients carrying 29 different TTR non-V30M mutations as well as 13 Japanese ATTRV30M patients were examined. Fibril type was determined by western blotting and compared to the patients' age of onset and degree of cardiomyopathy. All ATTR non-V30M patients had a fibril composition with ATTR fragments, except two ATTRY114C patients. No clear conclusions could be drawn about a phenotype to fibril type correlation among ATTR non-V30M patients. In contrast, Japanese ATTRV30M patients showed a similar correlation as previously described for Swedish ATTRV30M patients. This study shows that a fibril composition with fragmented ATTR is very common in ATTR amyloidosis, and suggests that fibrils composed of only full-length ATTR is an exception found only in a subset of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.