In general-synchronous framework, in which the clock is distributed periodically to each register but not necessarily simultaneously, the circuit performance such as the clock period is expected to be improved by delay insertion. However, if the amount of inserted delays is too much, then the circuit is changed too much and the circuit performance might not be improved. In this paper, we propose an efficient delay insertion method that minimizes the amount of inserted delays in the clock period improvement in general-synchronous framework. In the proposed method, the amount of inserted delays is minimized by using an appropriate clock schedule and by inserting delays into appropriate places in the circuit. Experiments show that the proposed method can obtain optimum solutions in short time in many cases.
In general-synchronous framework, in which the clock is distributed periodically to each register but not necessarily simultaneously, the circuit performance such as the clock period is expected to be improved by delay insertion. However, if the amount of inserted delays is too much, then the circuit is changed too much and the circuit performance might not be improved. In this paper, we propose an efficient delay insertion method that minimizes the amount of inserted delays in the clock period improvement in general-synchronous framework. In the proposed method, the amount of inserted delays is minimized by using an appropriate clock schedule and by inserting delays into appropriate places in the circuit. Experiments show that the proposed method can obtain optimum solutions in short time in many cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.