Dogs are commonly used in human and veterinary pharmaceutical development. Physiologically based pharmacokinetic modeling using recombinant cytochrome P450 (CYP) enzymes requires accurate estimates of CYP abundance, particularly in liver. However, such estimates are currently available for only seven CYPs, which were determined in a limited number of livers from one dog breed (beagle). In this study, we used a label-free shotgun proteomics method to quantitate 11 CYPs (including four CYPs not previously measured), cytochrome P450 oxidoreductase, and cytochrome b5 in liver microsomes from 59 dogs representing four different breeds and mixedbreed dogs. Validation included showing correlation with CYP marker activities, immunoquantified protein, as well as CYP1A2 and CYP2C41 null allele genotypes. Abundance values largely agreed with those previously published. Average CYP abundance was highest (>120 pmol/mg protein) for CYP2D15 and CYP3A12; intermediate (40-89 pmol/mg) for CYP1A2, CYP2B11, CYP2E1, and CYP2C21; and lowest (<12 pmol/mg) for CYP2A13, CYP2A25, CYP2C41, CYP3A26, and CYP1A1. The CYP2C41 gene was detected in 12 of 58 (21%) livers. CYP2C41 protein abundance averaged 8.2 pmol/mg in those livers, and was highest (19 pmol/mg) in the only liver with two CYP2C41 gene copies. CYP1A2 protein was not detected in the only liver homozygous for the CYP1A2 stop codon mutation. Large breed-associated differences were observed for CYP2B11 (P < 0.0001; ANOVA) but not for other CYPs. Research hounds and Beagles had the highest CYP2B11 abundance; mixed-breed dogs and Chihuahua were intermediate; whereas greyhounds had the lowest abundance. These results provide the most comprehensive estimates to date of CYP abundance and variability in canine liver. SIGNIFICANCE STATEMENT This work provides the most comprehensive quantitative analysis to date of the drug-metabolizing cytochrome P450 proteome in dogs that will serve as a valuable reference for physiologically based scaling and modeling used in drug development and research. This study also revealed high interindividual variation and dog breedassociated differences in drug-metabolizing cytochrome P450 expression that may be important for predicting drug disposition variability among a genetically diverse canine population.
Tramadol is widely used to manage mild to moderately painful conditions in dogs. However, this use is controversial since clinical efficacy studies in dogs showed conflicting results, while pharmacokinetic studies demonstrated relatively low circulating concentrations of O-desmethyltramadol (M1). Analgesia has been attributed to the opioid effects of M1, while tramadol and the other major metabolite (N-desmethyltramadol, M2) are considered inactive at opioid receptors. The aims of this study were to determine whether cytochrome P450 (CYP) dependent M1 formation by dog liver microsomes is slower compared with cat and human liver microsomes; and identify the CYPs responsible for M1 and M2 formation in canine liver. Since tramadol is used as a racemic mixture of (+)- and (-)-stereoisomers, both (+)-tramadol and (-)- tramadol were evaluated as substrates. M1 formation from tramadol by liver microsomes from dogs was slower than from cats (3.9-fold), but faster than humans (7-fold). However, M2 formation by liver microsomes from dogs was faster than from cats (4.8-fold) and humans (19-fold). Recombinant canine CYP activities indicated that M1 was formed by CYP2D15, while M2 was largely formed by CYP2B11 and CYP3A12. This was confirmed by dog liver microsomes studies that showed selective inhibition of M1 formation by quinidine and M2 formation by chloramphenicol and CYP2B11 antiserum, and induction of M2 formation by phenobarbital. Findings were similar for both (+)-tramadol and (-)-tramadol. In conclusion, low circulating M1 concentrations in dogs is explained in part by low M1 formation and high M2 formation, which are mediated by CYP2D15 and CYP2B11/CYP3A12, respectively.
We previously showed that (+)-tramadol is metabolized in dog liver to (+)-M1 exclusively by CYP2D15 and to (+)-M2 by multiple CYPs, but primarily CYP2B11. However, (+)-M1 and (+)-M2 are further metabolized in dogs to (+)-M5, which is the major metabolite found in dog plasma and urine. In this study, we identified canine CYPs involved in metabolizing (+)-M1 and (+)-M2 using recombinant enzymes, untreated dog liver microsomes (DLMs), inhibitor-treated DLMs, and DLMs from CYP inducer-treated dogs. A canine P-glycoprotein expressing cell line was also used to evaluate whether (+)-tramadol, (+)-M1, (+)-M2, or (+)-M5 are substrates of canine P-glycoprotein, thereby limiting their distribution into the central nervous system. (+)-M5 was largely formed from (+)-M1 by recombinant CYP2C21 with minor contributions from CYP2C41 and CYP2B11. (+)-M5 formation in DLMs from (+)-M1 was potently inhibited by sulfaphenazole (CYP2C inhibitor) and chloramphenicol (CYP2B11 inhibitor) and was greatly increased in DLMs from phenobarbital-treated dogs. (+)-M5 was formed from (+)-M2 predominantly by CYP2D15. (+)-M5 formation from (+)-M1 in DLMs was potently inhibited by quinidine (CYP2D inhibitor) but had only a minor impact from all CYP inducers tested. Intrinsic clearance estimates showed over 50 times higher values for (+)-M5 formation from (+)-M2 compared with (+)-M1 in DLMs. This was largely attributed to the higher enzyme affinity (lower Km) for (+)-M2 compared with (+)-M1 as substrate. (+)-tramadol, (+)-M1, (+)-M2, or (+)-M5 were not p-glycoprotein substrates. This study provides a clearer picture of the role of individual CYPs in the complex metabolism of tramadol in dogs.
Tramadol is used frequently in the management of mild to moderate pain conditions in dogs. This use is controversial because multiple reports in treated dogs demonstrate very low plasma concentrations of O-desmethyltramadol (M1), the active metabolite. The objective of this study was to identify a drug that could be coadministered with tramadol to increase plasma M1 concentrations, thereby enhancing analgesic efficacy. In vitro studies were initially conducted to identify a compound that inhibited tramadol metabolism to N-desmethyltramadol (M2) and M1 metabolism to N,O-didesmethyltramadol (M5) without reducing tramadol metabolism to M1. A randomized crossover drug-drug interaction study was then conducted by administering this inhibitor or placebo with tramadol to 12 dogs. Blood and urine samples were collected to measure tramadol, tramadol metabolites, and inhibitor concentrations. After screening 86 compounds, fluconazole was the only drug found to inhibit M2 and M5 formation potently without reducing M1 formation. Four hours after tramadol administration to fluconazole-treated dogs, there were marked statistically significant (P < 0.001; Wilcoxon signed-rank test) increases in plasma tramadol (31-fold higher) and M1 (39-fold higher) concentrations when compared with placebo-treated dogs. Conversely, plasma M2 and M5 concentrations were significantly lower (11-fold and 3-fold, respectively; P < 0.01) in fluconazole-treated dogs. Metabolite concentrations in urine followed a similar pattern. This is the first study to demonstrate a potentially beneficial drug-drug interaction in dogs through enhancing plasma tramadol and M1 concentrations. Future studies are needed to determine whether adding fluconazole can enhance the analgesic efficacy of tramadol in healthy dogs and clinical patients experiencing pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.