Recently, a new and fatal strain of coronavirus named as SARS-CoV-2 (Disease: COVID-19) appeared in Wuhan, China in December of 2019. Due to its fast growing human to human transmission and confirmed cases in nearly every country, it has been declared as pandemic by World Health Organisation (WHO) on 11 March 2020. Till now, there is no therapy such as vaccines and specific therapeutic agents available globally. Inspite of this, some protease inhibitors and antiviral agents namely lopinavir, ritonavir, remdisivir and chloroquine are under investigation and also implemented in several countries as therapeutic agents for the treatment of COVID-19. Seeing the health crisis across the world, it was our aim to find out a suitable drug candidate which could target SARS-CoV-2.For this purpose, molecular docking of 7 proteinsof SARS-CoV-2 was done with 18active constituents that have previously been reported to be antiviral or anti-SARS-CoV agents. The docking results of these 18 compounds were compared with 2 FDA approved drugs that have are currently being used in COVID 19, namely Remdesivir and Chloroquine. Our result revealed that among all, epigallocatechin gallate (EGCG), a major constituent of green tea, is the lead compound that could fit well into the binding sites of docked proteins of SARS-CoV-2. EGCG showed very strong molecular interactions with binding energies -9. 30, -8.66, -8.38, -7.57, -7.26, -6.99 and -4.90 kcal/mole for6y2e, 6vw1, 6vww, 6lxt,6vsb, 6lu7 and 6lvnproteins of SARS-CoV-2, respectively.Therefore, EGCG as per our results, should be explored as a drug candidate for the treatment of COVID-19.
Luteolin (Lut) is an important plant-derived flavonoid that is widely distributed in edible herbs and vegetables. Studies on animal and human models have shown that Lut exhibits various pharmacological properties, viz. anti-inflammatory, anti-cancer, anti-oxidant, anti-apoptotic, and neurotrophic actions. The ongoing pandemic coronavirus disease-2019 (COVID-19), is a disease of the respiratory tract that consists of mild to severe symptoms of pneumonia including fever, muscle aches, sore throat, coughing, and shortness of breath. It is of particular concern in older people and patients with chronic diseases having cardiovascular and blood clotting issues or who have compromised immune. This situation prompted us to evaluate the bioactive compounds which are being used to prevent respiratory-related illness. Lut is one such compound which is used as an anti-inflammatory agent. Several studies have explained the protective nature of Lut by inhibiting virus entry and fusion with human receptors in old SARS-CoV that had emerged in 2003. Thus, regular consumption of foods having adequate amount of Lut in our diet may be helpful in inhibiting the SARS-CoV-2 infection as well and may prevent the consequent symptoms in COVID-19 patients. In present work, we have carried out the molecular docking studies of Lut with six different SARS-CoV-2 encoded key proteins. The FDA-approved drug remdesivir was also evaluated as control to compare the results. Lut showed excellent inhibitory action against papain-like proteinase, a main protease of SARS-CoV-2. Lut was also many times more active than remdesivir. Therefore, the foods which have Lut in adequate amount might be explored further for potential use against COVID-19
SARS‐CoV‐2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS‐CoV‐2 has further worsened the scenario and has bolstered research in the area. The N‐terminal and C‐terminal RNA binding domains (NTD and CTD) of SARS‐CoV‐2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum , Cinnamomum tamala , Origanum vulgare , and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro . To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS‐CoV‐2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS‐CoV‐2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS‐CoV‐2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS‐CoV‐2 nucleocapsid protein NTD‐apigenin complex displayed greater stability than SARS‐CoV‐2 nucleocapsid protein NTD‐cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS‐CoV‐2, if examined further in vitro and in vivo . Practical applications Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz . Cinnamomum zeylanicum , Cinnamomum tamala , Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compoun...
Two new monoterpene indole alkaloids, Vincosamide‐N‐oxide (1) and isodihydroamino cadambine (2) along with seven known alkaloids and triterpenoids vincosamide (3), vallesiachotamine (4), iso‐vallesiachotamine (5), dihydrocadambine (6), cadambine (7), ursolic acid (8) and oleanolic acid (9) were isolated from the fruits of Anthocephalus cadamba (Roxb) Miq. (Family: Rubiaceae). The chemical structures of the isolated molecules were determined using a combination of InfraRed (IR) and one dimensional (1D) and two dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopy and High Resolution‐Electronspray Ionisation Mass Spectrometry (HR‐ESIMS). The molecules were evaluated for their in‐vitro antiproliferative activity against human lung cancer cell line H1299. Cytotoxic profile was studied in mouse macrophage RAW 264.7 cell line and induction of apoptosis in MCF‐7 cells. Compounds 4 and 5 were found to exhibit potent anticancer activity with IC50 values of 4.24 and 3.79 μM respectively. Both compounds demonstrated significant fragmentation in the chromatin within the nucleus cells as a result of apoptosis. In addition none of the purified compounds showed any toxic effect on normal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.