-Most news recommender systems try to identify users' interests and news' attributes and use them to obtain recommendations. Here we propose an adaptive model which combines similarities in users' rating patterns with epidemic-like spreading of news on an evolving network. We study the model by computer agent-based simulations, measure its performance and discuss its robustness against bias and malicious behavior. Subject to the approval fraction of news recommended, the proposed model outperforms the widely adopted recommendation of news according to their absolute or relative popularity. This model provides a general social mechanism for recommender systems and may find its applications also in other types of recommendation.
The optimal information feedback is very important to many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. As to traffic flow, a reasonable real-time information feedback can improve the urban traffic condition by providing route guidance. In this paper, the influence of a feedback strategy named congestion coefficient feedback strategy is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other two information feedback strategies, i.e., travel time and mean velocity.
A new mechanism for the fast excitation of the energetic geodesic acoustic mode (EGAM) is proposed to explain the recent experiment in DIII-D (Nazikian et al 2008 Phys. Rev. Lett. 101 185001), where the mode turns on in less than a millisecond after the turn-on of the neutral beam injection. The existence of loss boundary in pitch angle when beam particles are injected counter to the plasma current is crucial to the formation of negative energy EGAM mode. The resonance of this negative energy wave with energetic particles, whose distribution decreases with energy, destabilizes the mode. We find that when there is a loss region, the onset time of instability can be significantly shorter than it would be if the injected particles had no loss region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.