Mutation of the ABCA3 gene causes fatal surfactant deficiency in newborns. ABCA3 is critical for the proper formation of lamellar bodies and surfactant function and may also be important for lung function in other pulmonary diseases. Since it is closely related to ABCA1 and ABCA4, proteins that transport phospholipids in macrophages and photoreceptor cells, it may have a role in surfactant phospholipid metabolism.
The ATP-binding cassette (ABC) superfamily of genes encode membrane proteins that transport a diverse set of substrates across membranes. Mutations in ABC transporters cause or contribute to many different Mendelian and complex disorders including adrenoleukodystrophy, cystic fibrosis, retinal degeneration, hypercholesterolemia, and cholestasis. The genes play important roles in protecting organisms from xenobiotics and transport compounds across the intestine, blood-brain barrier, and the placenta. There are 48 ABC genes in the human genome divided into seven subfamilies based on amino acid sequence similarities and phylogeny. These seven subfamilies are represented in all eukaryotic genomes and are therefore of ancient origin. Sequencing the genomes of numerous vertebrate organisms has allowed the complement of ABC transporters to be characterized and the evolution of the genes to be assessed. Most ABC transporters are conserved in all vertebrates, but there are also several examples of recent duplication and gene loss. For genes with a conserved ortholog, animal models have been identified or developed that can be used to probe the function and regulation of selected genes. Genes that are restricted to a specific group of animals may represent specialized functions that could provide insight into unique biological properties of that organism. Further characterization of all ABC transporters from the human genome and from model organisms will lead to additional insights into normal physiology and human disease.
Vertebrate evolution has been largely driven by the duplication of genes that allow for the acquisition of new functions. The ATP-binding cassette (ABC) proteins constitute a large and functionally diverse family of membrane transporters. The members of this multigene family are found in all cellular organisms, most often engaged in the translocation of a wide variety of substrates across lipid membranes. Because of the diverse function of these genes, their large size, and the large number of orthologs, ABC genes represent an excellent tool to study gene family evolution. We have identified ABC proteins from the sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and chicken (Gallus gallus) and, using phylogenetic analysis, identified those genes with a one-to-one orthologous relationship to human ABC proteins. All ABC protein subfamilies found in Ciona and zebrafish correspond to the human subfamilies, with the exception of a single ABCH subfamily gene found only in zebrafish. Multiple gene duplication and deletion events were identified in different lineages, indicating an ongoing process of gene evolution. As many ABC genes are involved in human genetic diseases, and important drug transport phenotypes, the understanding of ABC gene evolution is important to the development of animal models and functional studies.
The prognostic and diagnostic value of microRNA (miRNA) expression aberrations in lung cancer has been studied intensely in recent years. However, due to the application of different technological platforms and small sample size, the miRNA expression profiling efforts have led to inconsistent results between the studies. We performed a comprehensive metaanalysis of 20 published miRNA expression studies in lung cancer, including a total of 598 tumor and 528 non-cancerous control samples. Using a recently published robust rank aggregation method, we identified a statistically significant miRNA meta-signature of seven upregulated (miR-21, miR-210, miR-182, miR-31, miR-200b, miR-205 and miR-183) and eight downregulated (miR-126-3p, miR-30a, miR-30d, miR-486-5p, miR-451a, miR-126-5p, miR-143 and miR-145) miRNAs. We conducted a gene set enrichment analysis to identify pathways that are most strongly affected by altered expression of these miRNAs. We found that meta-signature miRNAs cooperatively target functionally related and biologically relevant genes in signaling and developmental pathways. We have shown that such meta-analysis approach is suitable and effective solution for identification of statistically significant miRNA meta-signature by combining several miRNA expression studies. This method allows the analysis of data produced by different technological platforms that cannot be otherwise directly compared or in the case when raw data are unavailable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.