Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) is a diagnosis of exclusion, being the most common entity in mature T-cell neoplasms, and its molecular pathogenesis remains significantly understudied. Here, combining whole-exome and targeted-capture sequencing, gene-expression profiling, and immunohistochemical analysis of tumor samples from 133 cases, we have delineated the entire landscape of somatic alterations, and discovered frequently affected driver pathways in PTCL, NOS, with and without a T-follicular helper (TFH) cell phenotype. In addition to previously reported mutational targets, we identified a number of novel recurrently altered genes, such as KMT2C, SETD1B, YTHDF2, and PDCD1. We integrated these genetic drivers using hierarchical clustering and identified a previously undescribed molecular subtype characterized by TP53 and/or CDKN2A mutations and deletions in non-TFH PTCL, NOS. This subtype exhibited different prognosis and unique genetic features associated with extensive chromosomal instability, which preferentially affected molecules involved in immune escape and transcriptional regulation, such as HLA-A/B and IKZF2. Taken together, our findings provide novel insights into the molecular pathogenesis of PTCL, NOS by highlighting their genetic heterogeneity. These results should help to devise a novel molecular classification of PTCLs and to exploit a new therapeutic strategy for this group of aggressive malignancies.
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal lining of the upper aerodigestive tract. Tobacco and alcohol use have been reported to be associated with HNSCC. Infection with high-risk human papillomaviruses (HPVs) has recently been implicated in the pathogenesis of HNSCCs. It is now widely accepted that high-risk HPV is a cause of almost all cervical cancers as well as some forms of HNSCCs. HPV-related HNSCCs are increasing. HPV-related HNSCCs and HPV-unrelated HNSCCs differ with respect to the molecular mechanisms underlying their oncogenic processes. HPV-related HNSCCs are known to have a better prognosis response to treatment as compared with HPV-unrelated HNSCCs. Therefore, in recent years, it has been required to accurately discriminate between HPV-related and HPV-unrelated HNSCCs. To diagnose the HPV-related HNSCCs, various methods including P16 immunohistochemistry, FISH, and genetic analyses of the HPV gene from histopathological and liquid biopsy specimens have been employed. Based on the results of the differential diagnosis, various treatments employing EGFR TKI and low-dose radiation have been employed. Here, we review the involvement of the HPV virus in HNSCCs as well as the molecular mechanism of carcinogenesis, classification, prognosis, diagnostic procedures, and therapy of the disease.
Adoptive transfer of CD4 + CD25 + regulatory T cells has been shown to have therapeutic effects in experimental graft-vshost disease (GVHD) models. Chemokines play an important role in the recruitment of alloreactive donor T cells into target organs during GVHD. In this study, we investigated the effectiveness of targeted delivery of CD4 + CD25 + regulatory T cells via a transfected chemokine receptor on reduction of organ damage during acute GVHD. High levels of expression of Th1-associated chemokines (CXCL9, CXCL10 and CXCL11) and their receptor CXCR3 were observed in the liver, lung and intestine of GVHD-induced recipient mice. Recipient mice that had undergone transfer of CD4 + CD25 + Foxp3 + CXCR3-transfected T cells (CXCR3-Treg cells) showed significant amelioration of GVHD changes in the liver, lung and intestine in comparison with recipient mice that had received CD4 + CD25 + Foxp3 + T cells (Treg cells) or naturally occurring CD4 + CD25 + regulatory T cells. This was due to more pronounced migration of CXCR3-Treg cells and their localization for a longer time in Th1-associated chemokine-expressing organs, resulting in stronger suppressive activity. We succeeded in preparing chemokine receptor-expressing Treg cells and demonstrated their ability to ameliorate disease progression upon accumulation in target organs. This method may provide a new therapeutic approach for organ damage in acute GVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.