For Ͼ30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D 2 -like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D 2 -like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D 2 -like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D 2 -like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D 2 receptors.
The photothrombotic stroke model generates localized and reproducible ischemic infarcts that are useful for studying recovery mechanisms, but its failure to produce a substantial ischemic penumbra weakens its resemblance to human stroke. We examined whether a modification of this approach, confining photodamage to arteries on the cortical surface (artery-targeted photothrombosis), could better reproduce aspects of the penumbra. Following artery-targeted or traditional photothrombosis to the motor cortex of mice, post-ischemic cerebral blood flow was measured using multi-exposure speckle imaging at 6, 48, and 120 h post-occlusion. Artery-targeted photothrombosis produced a more graded penumbra at 48 and 120 h. The density of isolectin B4+ vessels in peri-infarct cortex was similarly increased after both types of infarcts compared to sham at 2 weeks. These results indicate that both models instigated post-ischemic vascular structural changes. Finally, we determined whether the strength of the traditional photothrombotic approach for modeling upper-extremity motor impairments extends to the artery-targeted approach. In adult mice that were proficient in a skilled reaching task, small motor-cortical infarcts impaired skilled-reaching performance for up to 10 days. These results support that artery-targeted photothrombosis widens the penumbra while maintaining the ability to create localized infarcts useful for modeling post-stroke impairments.
After subtotal infarcts of primary motor cortex (M1), motor rehabilitative training (RT) promotes improvements in paretic forelimb function that have been linked with its promotion of structural and functional reorganization of peri-infarct cortex, but how the reorganization unfolds is scantly understood. Cortical infarcts also instigate a prolonged period of dendritic spine turnover in peri-infarct cortex. Here we investigated the possibility that synaptic structural responses to RT in peri-infarct cortex reflect, in part, interactions with ischemia-instigated spine turnover. This was tested after artery-targeted photothrombotic M1 infarcts or Sham procedures in adult (4 months) C57BL/6 male and female GFP-M line (n ϭ 24) and male yellow fluorescent protein-H line (n ϭ 5) mice undergoing RT in skilled reaching or no-training control procedures. Regardless of training condition, spine turnover was increased out to 5 weeks postinfarct relative to Sham, as was the persistence of new spines formed within a week postinfarct. However, compared with no-training controls, new spines formed during postinfarct weeks 2-4 in mice undergoing RT persisted in much greater proportions to later time points, by a magnitude that predicted behavioral improvements in the RT group. These results indicate that RT interacts with ischemiainstigated spine turnover to promote preferential stabilization of newly formed spines, which is likely to yield a new population of mature synapses in peri-infarct cortex that could contribute to cortical functional reorganization and behavioral improvement. The findings newly implicate ischemia-instigated spine turnover as a mediator of cortical synaptic structural responses to RT and newly establish the experience dependency of new spine fates in the postischemic turnover context.
We perform high-resolution, non-invasive, deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between=1,100 and 1,400 nm. By combining the high repetition rate (511 kHz) and high pulse energy (400 nJ) of our amplifier laser system, we demonstrate imaging of vasculature labeled with Texas Red and Indocyanine Green, and neurons expressing tdTomato and yellow fluorescent protein. We measure the blood flow speed of a single capillary at a depth of 1.2 mm, and image vasculature to a depth of 1.53 mm with fine axial steps (5 m) and reasonable acquisition times. The high image quality enabled analysis of vascular morphology at depths to 1.45 mm.
, "Imaging of cortical oxygen tension and blood flow following targeted photothrombotic stroke," Neurophoton. 5(3), 035003 (2018), doi: 10.1117/1.NPh.5.3.035003. Abstract. We present a dual-modality imaging system combining laser speckle contrast imaging and oxygendependent quenching of phosphorescence to simultaneously map cortical blood flow and oxygen tension (pO 2 ) in mice. Phosphorescence signal localization is achieved through the use of a digital micromirror device (DMD) that allows for selective excitation of arbitrary regions of interest. By targeting both excitation maxima of the oxygen-sensitive Oxyphor PtG4, we are able to examine the effects of excitation wavelength on the measured phosphorescence lifetime. We demonstrate the ability to measure the differences in pO 2 between arteries and veins and large changes during a hyperoxic challenge. We dynamically monitor blood flow and pO 2 during DMDtargeted photothrombotic occlusion of an arteriole and highlight the presence of an ischemia-induced depolarization. Chronic tracking of the ischemic lesion over eight days revealed a rapid recovery, with the targeted vessel fully reperfusing and pO 2 returning to baseline values within five days. This system has broad applications for studying the acute and chronic pathophysiology of ischemic stroke and other vascular diseases of the brain. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.