BackgroundLower airway abnormalities are common in patients with primary ciliary dyskinesia (PCD), a pediatric syndrome that results from structural or functional defects in motile cilia. Patients can suffer from recurrent bacterial infection in the lung, bronchiectasis, and respiratory distress in addition to chronic sinusitis, otitis media, infertility, and laterality defects. However, surprisingly little is known about the pulmonary phenotype of mouse models of this disorder.ResultsThe pulmonary phenotype of two mouse models of PCD, nm1054 and bgh, which lack Pcdp1 and Spef2, respectively, was investigated by histological and immunohistochemical analysis. In addition, both models were challenged with Streptococcus pneumoniae, a common respiratory pathogen found in the lungs of PCD patients. Histopathological analyses reveal no detectable cellular, developmental, or inflammatory abnormalities in the lower airway of either PCD model. However, exposure to S. pneumoniae results in a markedly enhanced inflammatory response in both models. Based on analysis of inflammatory cells in bronchoalveolar lavage fluid and flow cytometric analysis of cytokines in the lung, the bgh model shows a particularly dramatic lymphocytic response by 3 days post-infection compared to the nm1054 model or wild type animals.ConclusionsDefects in ciliary motility result in a severe response to pulmonary infection. The PCD models nm1054 and bgh are distinct and clinically relevant models for future studies investigating the role of mucociliary clearance in host defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.