Lessons Learned. Pregabalin is a medication that can decrease neuronal hyperexcitability, relieve neuropathic pain, and reach stable plasma levels after a titration period of only a few days.Its use during oxaliplatin infusions was not able to decrease the incidence of chronic, oxalipaltin‐related neuropathic pain, compared with placebo.Background.Patients with colorectal cancer (CRC) receiving oxaliplatin (OXA) develop acute and chronic painful oxaliplatin‐induced peripheral neuropathy (OXAIPN). Acute and chronic OXA‐related neuropathies have different pathophysiological bases, but both lead to a common phenomenon: central sensitization (CS) of nociceptive neuronal networks, leading to increased sensitivity (hyperlgesia, allodynia) in the somatosensory system, the common ground of chronic neuropathic pain. Because CS is related to increased risk of painful OXAIPN, we hypothesized that preemptive use of the anti‐hyperalgesic drug pregabaline (known to decrease CS) during OXA infusions would decrease the incidence of chronic OXAIPN.Methods.Pain‐free, chemotherapy‐naïve CRC patients receiving at least one cycle of modified‐FLOX [5‐FU(500 mg/m2)+leucovorin(20 mg/m2)/week for] 6 weeks+oxaliplatin(85 mg/m2) at weeks 1‐3‐5 every 8 weeks] were randomized (1:1) into the study. Patients received either pregabalin or placebo for 3 days before and 3 days after each OXA infusion and were followed for up to 6 months. Clinical assessments were performed at baseline, at the end of chemotherapy, and after the follow‐up period. The main outcome was average pain at the last visit assessed by the visual analogic scale (0–10) item of the Brief Pain Inventory (BPI). Secondary endpoints were presence of neuropathic pain according to the Douleur Neuropathique‐4 (DN‐4), pain dimensions (short‐ form McGill Pain Questionnaire [MPQ]), Neuropathic Pain Symptom Inventory (NPSI), and changes in nerve conduction studies (NCS) and side effect profile.Results.One hundred ninety‐nine patients (57.0 ± 10.7 years old, 98 female, 101 male) were randomized. Data from 56 patients were not included in the analyses (as they did not receive at least one full cycle of modified FLOX). Data from 78 patients in the pregabalin group and 65 patients in the placebo group were retained for analyses. At the last visit, pain intensity in the pregabalin group was 1.03 (95% confidence interval [CI] = 0.79–1.26), and 0.85 (95% CI = 0.64–1.06) in the placebo group, which did not reach significance. Scores from the BPI, MPQ, DN‐4, NPSI, and NCS and side‐effect profiles and incidence of death did not differ between groups. Quality of life (QoL) score did not differ between groups (placebo = 76.9 ± 23.1, pregabalin group 79.4 ± 20.6). Mood scores were not significantly different between groups (placebo 9.7 [8.1–11.2]; pregabalin 6.8 [5.6–8.0]).Conclusion.The preemptive use of pregabalin during OXA infusions was safe, but did not decrease the incidence of chronic pain related to OXAIPN.
To evaluate changes in DNA methylation profiles in patients with fibromyalgia (FM) compared to matched healthy controls (HCs). All individuals underwent full clinical and neurophysiological assessment by cortical excitability (CE) parameters measured by transcranial magnetic stimulation. DNA from the peripheral blood of patients with FM (n = 24) and HC (n = 24) were assessed using the Illumina-HumanMethylation450 BeadChips. We identified 1610 differentially methylated positions (DMPs) in patients with FM displaying a nonrandom distribution in regions of the genome. Sixty-nine percent of DMP in FM were hypomethylated compared to HC. Differentially methylated positions were enriched in 5 genomic regions (1p34; 6p21; 10q26; 17q25; 19q13). The functional characterization of 960 genes related to DMPs revealed an enrichment for MAPK signaling pathway (n = 18 genes), regulation of actin cytoskeleton (n = 15 genes), and focal adhesion (n = 13 genes). A gene-gene interaction network enrichment analysis revealed the participation of DNA repair pathways, mitochondria-related processes, and synaptic signaling. Even though DNA was extracted from peripheral blood, this set of genes was enriched for disorders such as schizophrenia, mood disorders, bulimia, hyperphagia, and obesity. Remarkably, the hierarchical clusterization based on the methylation levels of the 1610 DMPs showed an association with neurophysiological measurements of CE in FM and HC. Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes implicated in stress response and DNA repair/free radical clearance. These changes occurred parallel to changes in CE parameters. New epigenetic insights into the pathophysiology of FM may provide the basis for the development of biomarkers of this disorder.
BackgroundHuman homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated.MethodsReal time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively.ResultsOverexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle.ConclusionThe present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies.
Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.
Calcium channels control the inflow of calcium ions into cells and are involved in diverse cellular functions. The CACNA1C gene polymorphism rs1006737 A allele has been strongly associated with increased risk for bipolar disorder (BD) and with modulation of brain morphology. The medial prefrontal cortex (mPFC) has been widely associated with mood regulation in BD, but the role of this CACNA1C polymorphism in mPFC morphology and brain aging has yet to be elucidated. One hundred seventeen euthymic BD type I subjects were genotyped for CACNA1C rs1006737 and underwent 3 T three-dimensional structural magnetic resonance imaging scans to determine cortical thickness of mPFC components (superior frontal cortex (sFC), medial orbitofrontal cortex (mOFC), caudal anterior cingulate cortex (cACC) and rostral anterior cingulate cortex (rACC)). Carriers of the CACNA1C allele A exhibited greater left mOFC thickness compared to non-carriers. Moreover, CACNA1C A carriers showed age-related cortical thinning of the left cACC, whereas among A non-carriers there was not an effect of age on left cACC cortical thinning. In the sFC, mOFC and rACC (left or right), a negative correlation was observed between age and cortical thickness, regardless of CACNA1C rs1006737 A status. Further studies investigating the direct link between cortical thickness, calcium channel function, apoptosis mechanism and their underlying relationship with aging-associated cognitive decline in BD are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.