Microcystins (MCs) are the most commonly-reported hepatotoxins produced by various cyanobacterial taxa in fresh waters to constitute a potential threat to human and animal health. The biological role of MCs in the producer organisms is not known, and it would be very useful to understand the driving force behind the toxin production. Recent studies have suggested that MCs may have a protective function in cells facing environmental stress. Following this starting premise, we speculate that under adverse conditions the expression of stress-related genes coding for Heat Shock Proteins (Hsp) might be different in an MC-producing strain and its MC-deficient mutant. We therefore used RT-qPCR to compare the expression of 13 hsp genes of an MC-producing strain of Planktothrix agardhii (CYA126/8) and its MC-deficient ΔmcyD mutant over different periods of exposure to high light stress (HL). Three reference genes (RGs) were selected from six candidates to normalize the RT-qPCR data. Of these three RGs (rsh, rpoD, and gltA), gltA is used here for the first time as an RG in prokaryotes. Under HL stress, five genes were found to be strongly up-regulated in both strains (htpG, dnaK, hspA, groES, and groEL). Unexpectedly, we found that the MC-producing wild type strain accumulated higher levels of htpG and dnaK transcripts in response to HL stress than the MC-deficient mutant. In addition, a significant increase in the mcyE transcript was detected in the mutant, suggesting that MCs are required under HL conditions. We discuss several possible roles of MCs in the response to HL stress through their possible involvement in the protective mechanisms of the cells.
-Proliferations of cyanobacteria have detrimental effects on ecosystem functioning, and on the global freshwater food chain. Many studies have focused on the "in situ" dynamics of bloom-forming cyanobacteria, including Cylindrospermopsis raciborskii and Planktothrix agardhii. Few have used experimental assays to explore the fast-growing ability of naturally co-occurring species. Here we investigated the growth of these species when exposed separately (i.e., in monocultures) to a range of light and nutrient conditions, plus their interactive performances in mixed cultures in a short-time experiment (6 days). The use of microplates made it possible to carry out multiple measurements of in-vivo fluorescence (IVF), and to monitor species-dependent biovolumes. No allelopathic effect was significantly observed for any target species, while significantly lower growth rates were obtained in mixed cultures, which may reflect other interference interactions between the species. We showed that Planktothrix grew faster with low light intensity and high nutrient concentrations, and was drastically inhibited by nitrogen deprivation, in contrast to Cylindrospermopsis. However, Cylindrospermopsis outgrew Planktothrix at high NH 4 + concentrations, suggesting that this species may be a serious competitor for the native species in many water systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.