Several methods have been developed over the last several years to analyze the mechanical properties of soft tissue. Elastography, for example, was proposed to evaluate soft tissue stiffness in an attempt to reduce the need for invasive procedures, such as breast biopsies; however, its qualitative nature and the fact that it is operator-dependent have proven to be limitations of the technique. Quantitative shearwave- based techniques have been proposed to obtain information about tissue stiffness independent of the operator. This paper describes shear wave dispersion magnetomotive ultrasound (SDMMUS), a new shear-wave-based method in which a viscoelastic medium labeled with iron oxide nanoparticles is displaced by an external tone burst magnetic field. As in magnetomotive ultrasound (MMUS), SDMMUS uses ultrasound to detect internal mechanical vibrations induced by the interaction between a magnetic field and magnetic nanoparticles. These vibrations generated shear waves that were evaluated to estimate the viscoelastic properties of tissue-mimicking phantoms. These phantoms were manufactured with different concentrations of gelatin and labeled with iron oxide nanoparticles. The elasticity and viscosity obtained with SDMMUS agreed well with the results obtained by traditional ultrasound-based transient elastography.
Julgamento: _____________________________ Assinatura: _________________ iii Dedico este trabalho à minha esposa Juliana pelo carinho, paciência, incentivo, compreensão e incansável apoio, aos meus filhos Luiza e João Pedro pelos momentos de felicidades e descontração, aos meus irmãos Nilza, Juninho e Gustavo, aos meus sogros Dirce e Celso e aos meus pais Antonio Luiz e Nair que sempre se esforçaram e me incentivaram nos estudos. Obrigado! iv AgradecimentosInicialmente a Deus, que se fez e faz presente em todos os momentos de nossa vida, seja no lar, no trabalho ou em qualquer lugar que estejamos.Ao meu orientador, Prof. Dr. Antonio Adilton Oliveira Carneiro, que nestes anos de convivência esteve como um grande amigo, agregando conhecimento e crescimento científico nos trabalhos realizados juntos. E destaco um ponto fundamental nesta convivência com o Prof.Adilton: foi um incentivador incansável do empreendedorismo tecnológico, o que resultou na criação de uma empresa que hoje é destaque nacional na área da saúde e orgulho-me dizer que ela nasceu no GIIMUS.Ao Prof. Dr. Theo Zeferino Pavan, um grande amigo e que eu considero como meu coorientador neste trabalho. Profissional competente e comprometido com a pesquisa científica.Ao amigo Diego Ronaldo Thomaz Sampaio que incansavelmente esteve comigo durante muitas noites e dias, sendo pessoa fundamental nas discussões e análises do trabalho realizado. Aos técnicos José Luiz Aziani, Carlos Renato da Silva, Agnelo dos Santos Bastos, Sérgio Bueno, Élcio Navas, Lourenço Rocha e Carlos Alberto Brunello, pelo suporte e prontidão em soluções de problemas durante a confecção do setup dos experimentos.As secretárias da pós-graduação Nilza Marina Leone Marino, Sonia Aparecida Nali de Paula e Maria Inês Joaquim pela competência e comprometimento com o cargo que exercem.v Ao laboratório GIIMUS -Grupo de Inovação em Instrumentação Médica e Ultrassom, por colocar à disposição toda a infraestrutura do laboratório.Sou eternamente grato aos meus pais Antonio Luiz e Nair e a todos os meus familiares pelo apoio, incentivo e esforços realizados para que eu pudesse sempre atingir os meus objetivos nos estudos.A minha esposa Juliana, grande incentivadora, companheira e que me deu um suporte familiar incrível para que eu realizasse a pós-graduação. Aos meus filhos, Luiza e João Pedro, que muitas vezes me desejaram "bom doutorado, papai".Aos amigos do laboratório GIIMUS, obrigado pela companhia e momentos de descontração.A todos da empresa FIGLABS Pesquisa e Desenvolvimento S/A pela compreensão nos momentos que estive ausente e contribuição nos estudos realizados.A todos os amigos, alunos e ex-alunos do Centro Universitário UNISEB que acreditaram e me deram a oportunidade de exercer a docência e compartilhar o meu conhecimento.A todos meus amigos que me acompanharam durante esta caminhada. Sistemas ultrassônicos tiveram uma evolução tecnológica nos últimos anos e isso permitiu que seus recursos de hardware e software pudessem ser explorados para extrair informações, auxiliando em diagnóstic...
This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa−1 and 0.073 µV (W cm−2)−1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa−1 and 6.153 mV (W cm−2)−1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa.
Estimating the rheological properties of soft tissues is a useful procedure to identify and evaluate pathologies in medical diagnosis. Quantification of soft tissue viscoelasticity can be achieved by generating and tracking shear wave propagation. Many ultrasound-based techniques have been used to evaluate the induced shear wave. The viscosity and elasticity can be measured by shear wave dispersion. The Magneto Motive Ultrasound induces motion within magnetically labeled tissue. This paper describes the Shear wave Dispersion Vibro Magneto Acoustography (SDVMA) technique for analysis and quantifying the viscoelasticity through shear wave propagation in gelatin phantoms labeled with ferromagnetic nanoparticles. Phantoms were excited applying an external magnetic field gradient and the movements induced in the internal phantom structure due to the interaction of the field with the particles were obtained through pulse-echo equipment ultrasound. The movement information were processed to get values of elasticity and viscosity of the medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.