Spitz nevi are indolent melanocytic tumors arising preferentially during and after childhood. Over the last decades, recurrent oncogenic drivers, sparsely detected in melanoma, were identified in Spitz melanocytic proliferations. Therefore, the detection of such drivers appears as a relevant diagnostic tool to distinguish both entities. Interestingly, morphologic features might correlate with the oncogenic drivers. Thus, the goal of this study was to assess the performances of previously identified morphological criteria to predict the presence of specific drivers. In total, 352 Spitz melanocytic proliferations either with a genetically identified oncogenic driver or investigated for ALK, ROS1, and NTRK1 overexpression by immunohistochemistry were enrolled in the present study. The microscopic features of the cases were assessed blindly with regards to the molecular status and, performances of previously described morphological criteria to predict the molecular status were assessed applying the likelihood-ratio test (LHR). Overall, an oncogenic driver was identified in 76% of the cases (n = 268/352). No microscopic features allowed the reliable prediction of ROS1-and NTRK1-overexpressing cases. By contrast, a plexiform pattern can contribute to the recognition of ALK-overexpressing cases (LHR(+) = 6.14). Importantly, the pseudo-schwannoma variant was highly suggestive of NTRK3-rearranged cases (LHR(+) = 43). Moreover, atypical/malignant tumor (LHR(+) = 5.18), severe cellular atypia (LHR(+) = 5.07), and p16 loss (LHR(+) = 14) contribute to the recognition of MAP3K8-rearranged cases, while the presence of a sheet-like architecture (LHR(+) = 5.39) and a marked fibrosis of the stroma (LHR(+)=5.06) were predictive of BRAF-fused tumors. To conclude, our study confirms ALK-overexpressing, NTRK3-, MAP3K8-, and BRAF-rearranged cases harbored distinct morphologic features allowing their microscopic recognition.
Merkel cell carcinoma (MCC), an aggressive neuroendocrine carcinoma of the skin, is to date the only human cancer known to be frequently caused by a polyomavirus. However, it is a matter of debate which cells are targeted by the Merkel cell polyomavirus (MCPyV) to give rise to the phenotypically multifaceted MCC cells. To assess the lineage of origin of MCPyV-positive MCC, genetic analysis of a very rare tumor combining benign trichoblastoma and MCPyV-positive MCC was conducted by massive parallel sequencing. Although MCPyV was found to be integrated only in the MCC part, six somatic mutations were shared by both tumor components. The mutational overlap between the trichoblastoma and MCPyV-positive MCC parts of the combined tumor implies that MCPyV integration occurred in an epithelial tumor cell before MCC development. Therefore, our report demonstrates that MCPyV-positive MCC can derive from the epithelial lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.