In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications.
The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.
A photolithographic process was used to integrate the conducting polymer poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with parylene C, yielding highly conformable electrode arrays that were only four micrometers thick (shown here to conform to the midrib of a small leaf). The arrays were sufficiently self‐supporting to allow in vivo evaluation in rats, yielding high‐quality electrocorticography recordings.
By varying device geometry we have engineered organic electrochemical transistors that exhibit their maximum transconductance at zero gate bias. This enables the design of a simplified amplifying transducer, allowing for improved integration with biomedical systems where prolonged gate bias can be detrimental.
The ability of organic electrochemical transistors is explored to record human electrophysiological signals of clinical relevance. An organic electrochemical transistor (OECT) that shows a high (>1 mS) transconductance at zero applied gate voltage is used, necessitating only one power supply to bias the drain, while the gate circuit is driven by cutaneous electrical potentials. The OECT is successful in recording cardiac rhythm, eye movement, and brain activity of a human volunteer. These results pave the way for applications of OECTs as an amplifying transducer for human electrophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.