In vitro RBC production from stem cells could represent an alternative to classic transfusion products. Until now the clinical feasibility of this concept has not been demonstrated. We addressed the question of the capacity of cultured RBCs (cRBCs) to survive in humans. By using a culture protocol permitting erythroid differentiation from peripheral CD34 ؉ HSC, we generated a homogeneous population of cRBC functional in terms of their deformability, enzyme content, capacity of their hemoglobin to fix/release oxygen, and expression of blood group antigens. We then demonstrated in the nonobese diabetes/severe combined immunodeficiency mouse that cRBC encountered in vivo the conditions necessary for their complete maturation. These data provided the rationale for injecting into one human a homogeneous sample of 10 10 cRBCs generated under good manufacturing practice conditions and labeled with 51
The congenital dyserythropoietic anemias (CDAs) are inherited red blood cell disorders whose hallmarks are ineffective erythropoiesis, hemolysis, and morphological abnormalities of erythroblasts in bone marrow. We have identified a missense mutation in KLF1 of patients with a hitherto unclassified CDA. KLF1 is an erythroid transcription factor, and extensive studies in mouse models have shown that it plays a critical role in the expression of globin genes, but also in the expression of a wide spectrum of genes potentially essential for erythropoiesis. The unique features of this CDA confirm the key role of KLF1 during human erythroid differentiation. Furthermore, we show that the mutation has a dominant-negative effect on KLF1 transcriptional activity and unexpectedly abolishes the expression of the water channel AQP1 and the adhesion molecule CD44. Thus, the study of this disease-causing mutation in KLF1 provides further insights into the roles of this transcription factor during erythropoiesis in humans.
The human ATP-binding cassette (ABC) transporter ABCB6 has been described as a mitochondrial porphyrin transporter essential for heme biosynthesis1, but is also suspected to contribute to anticancer drug resistance2–4, as do other ABC transporters located at the plasma membrane. We identified ABCB6 as the carrier of the blood group antigen Lan on red blood cells, but also at the plasma membrane of hepatocellular carcinoma (HCC) cells, and established that ABCB6 actually encodes a new blood group system (Langereis, Lan). Targeted sequencing of ABCB6 in 12 unrelated individuals of the blood type Lan− identified 10 different ABCB6 null mutations. This is the first report of deficient alleles of this human ABC transporter gene. Surprisingly, Lan− (ABCB6−/−) individuals do not suffer any clinical consequences, albeit their deficiency in ABCB6 may place them at risk when defining drug dosage.
The breast cancer resistance protein, also known as ABCG2, is one of the most studied ATP-binding cassette (ABC) transporters, due to its ability to confer multidrug resistance1,2. The lack of information on the physiological roles of ABCG2 in humans severely limits cancer chemotherapeutic approaches targeting this transporter. We report here that ABCG2 comprises the molecular basis of a new blood group system (Junior, Jr), and that individuals of the Jr(a−) blood type have inherited two null alleles of ABCG2. We thus identified 5 frameshift and 3 nonsense mutations in ABCG2. Furthermore, we show that the prevalence of the Jr(a−) blood type in the Japanese and European Gypsy populations is related to the mutations p.Q126X and p.R236X, respectively. The identification of ABCG2−/− (Jr(a−)) individuals, who appear phenotypically normal, is an essential step towards targeting ABCG2 in cancer, but also understanding the physiological and pharmacological roles of this promiscuous transporter in humans.
The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α 1 domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α 1 and NTS-DBL1α 1 -CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A 1 , weaker binding to groups A 2 and B, and least binding to groups A x and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α 1 -CIDR1γ, reveals extensive contacts between the DBL1α 1 and CIDR1γ and shows that the NTS-DBL1α 1 hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα 1 . RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.