The proton is the primary building block of the visible Universe, but many of its properties-such as its charge radius and its anomalous magnetic moment-are not well understood. The root-mean-square charge radius, r(p), has been determined with an accuracy of 2 per cent (at best) by electron-proton scattering experiments. The present most accurate value of r(p) (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants. This value is based mainly on precision spectroscopy of atomic hydrogen and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of r(p) as deduced from electron-proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant). An attractive means to improve the accuracy in the measurement of r(p) is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift (the energy difference between the 2S(1/2) and 2P(1/2) states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations of fine and hyperfine splittings and QED terms, we find r(p) = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by -110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.
Proton Still Too Small Despite a proton's tiny size, it is possible to measure its radius based on its charge or magnetization distributions. Traditional measurements of proton radius were based on the scattering between protons and electrons. Recently, a precision measurement of a line in the spectrum of muonium—an atom consisting of a proton and a muon, instead of an electron—revealed a radius inconsistent with that deduced from scattering studies. Antognini et al. (p. 417 ; see the Perspective by Margolis ) examined a different spectral line of muonium, with results less dependent on theoretical analyses, yet still inconsistent with the scattering result; in fact, the discrepancy increased.
The aim of the study was to investigate whether the electromagnetic field (EMF) emitted by digital radiotelephone handsets affects brain physiology. Healthy, young male subjects were exposed for 30 min to EMF (900 MHz; spatial peak specific absorption rate 1 W/kg) during the waking period preceding sleep. Compared with the control condition with sham exposure, spectral power of the EEG in non-rapid eye movement sleep was increased. The maximum rise occurred in the 9.75-11.25 Hz and 12.5-13.25 Hz band during the initial part of sleep. These changes correspond to those obtained in a previous study where EMF was intermittently applied during sleep. Unilateral exposure induced no hemispheric asymmetry of EEG power. The present results demonstrate that exposure during waking modifies the EEG during subsequent sleep. Thus the changes of brain function induced by pulsed high-frequency EMF outlast the exposure period.
The design, setup, and performance of a mass spectrometric system for the analysis of noble gas isotopes ( 3 He, 4 He, 20 Ne, 21 Ne, 22 Ne, 36 Ar, 40 Ar, 84 Kr, 136 Xe) and tritium ( 3 H) from water samples are described. The 3 H concentration is measured indirectly by the 3 He ingrowth from radioactive decay. After extraction, purification, and separation, the noble gases are measured in two noncommercial doublecollector 90°magnetic sector mass spectrometers. We present a new approach for the analysis of the heavy noble gas isotopes that enables, in principle, simultaneous measurement of Ar, Kr, and Xe. Typical precisions of the measurements of 3 H, He, Ne, Ar, Kr, and Xe concentrations are (2.7%, (0.3%, (0.9%, (0.3%, (0.8%, and (1.0%, respectively. For the isotopic ratios 3 He/ 4 He, 20 Ne/ 22 Ne, and 40 Ar/ 36 Ar the typical precisions are (0.7%, (0.3%, and (0.2%. These values express the reproducibility of the measurement of an internal freshwater standard and include the overall stability of the system as well as of the extraction procedure. To verify the method, the noble gas concentrations of air-saturated water samples prepared under controlled conditions are compared with noble gas solubility data. The 20 Ne/ 22 Ne and 36 Ar/ 40 Ar fractionation during solution is estimated from 70 surface water samples to be -2.0 ( 0.2‰ and -1.3 ( 0.2‰, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.