Degradation is a technical and market hurdle in the development of novel photovoltaics and other energy devices. Understanding and addressing degradation requires complex, time-consuming measurements on multiple samples. To address this challenge, we present \textit{DeepDeg}, a machine learning model that combines deep learning, explainable machine learning, and physical modeling to: 1) forecast hundreds of hours of degradation, and 2) explain degradation in novel photovoltaics. Using a large and diverse dataset of over 785 stability tests of organic solar cells, totaling 230,000 measurement hours, DeepDeg is able to accurately predict degradation dynamics and explain the physiochemical factors driving them using few initial hours of degradation. We use cross-validation and a held-out dataset of over 9,000 hours of degradation of PCE10:OIDTBR to evaluate our model. We demonstrate that by using DeepDeg, degradation characterization and screening can be accelerated by 5-20x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.