Existing welded steel moment frames are designed to tolerate substantial yielding and plastic rotation under earthquake loads. This sacrificial design approach can lead to permanent, and often irreparable damage when interstory drifts exceed 2%. The experimental seismic performance of a 50% full-scale damage avoidance designed structural steel beam-column connection is presented. The beamcolumn joint region consists of a top flange-hung beam connected to the column by an angle bracket. High-force-to-volume (HF2V) devices are attached from the column to the beam to provide joint rigidity and energy dissipation as the joint opens and closes. The HF2V devices are connected either below the beam flange or concealed above the beam's lower flange. Reversed cyclic lateral load tests are conducted with drift amplitudes up to 4%. No damage is observed in the principal beam and column structural elements. The need for stiff device connections to achieve optimal device performance is demonstrated, and potential design solutions presented. Stable hysteresis and repeatable energy dissipation for a large number of cycles up to the 4% drift level is observed. It is concluded that superior and repeatable energy dissipation without damage can be achieved for every dynamic motion cycle, in contrast to conventional sacrificially designed welded moment frame connections.UCRR http://ir.canterbury.ac.nz/handle/10092/3580
Elongated congested volumes are common at chemical processing and petroleum refining facilities due to the arrangement of processing units, but there have been relatively few evaluations reported for the blast loads produced by elongated vapor cloud explosions (VCEs). The accidental VCE that occurred at the Buncefield, UK facility in 2005 involved an elongated congested volume formed by the trees and undergrowth along a portion of the site boundary. Some of near-field damage indicators present at the Buncefield site could not be reasonably explained using existing standard VCE blast load prediction techniques that are based on an assumption that the congested volume filled with flammable gas cloud is hemispherical and located at grade level.This paper summarizes recent work to define the characteristics associated with elongated congested volume VCEs and identify differences relative to standard VCEs involving compact congested volume geometries. The main conclusions from this work with regard to the blast wave shape for an elongated congested volume deflagration are: (1) the blast wave behaves as an acoustic wave along the long axis, (2) the blast wave has a very quick transition from the positive phase peak pressure to the negative phase peak pressure (i.e., quick relative to the positive phase duration), and (3) the magnitude of the pressure drop between the peak positive and negative pressures diminishes quickly with distance outside the congested volume. These observations are not consistent with the behavior of a compact congested volume geometry VCE blast wave.Deflagration and deflagration-to-detonation transition (DDT) regimes were also identified for unconfined elongated congested volume VCEs as a function of the normalized flame travel distance and flame speed. These regimes were verified with existing test data, including data from the ongoing RPSEA test program. These observations and the DDT regime identification provide a frame of reference to develop a better understanding of elongated congested volume VCEs.Generic structures, with properties typical of conventional construction, were analyzed to illustrate the effect of the elongated congested volume VCE blast loads on structural response. The results show that, for an elongated congested volume VCE, a high flame speed deflagration may result in more severe structural response in the near-field than for a detonation (i.e., due to a DDT). These results provide an alternative near-field damage indicator analysis approach for the investigation of elongated congested volume VCE incidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.