Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of ␣-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus.Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposuretoa-synoligomersdrivestheincreaseofglutamatergicsynaptictransmission,preventingfurtherpotentiationbyphysiologicalstimuli.Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.
Inclusions of intraneuronal alpha-synuclein (α-synuclein) can be detected in brains of patients with Parkinson's disease and dementia with Lewy bodies. The aggregation of α-synuclein is a central feature of the disease pathogenesis. Among the different α-synuclein species, large oligomers/protofibrils have particular neurotoxic properties and should therefore be suitable as both therapeutic and diagnostic targets. Two monoclonal antibodies, mAb38F and mAb38E2, with high affinity and strong selectivity for large α-synuclein oligomers were generated. These antibodies, which do not bind amyloid-beta or tau, recognize Lewy body pathology in brains from patients with Parkinson's disease and dementia with Lewy bodies and detect pathology earlier in α-synuclein transgenic mice than linear epitope antibodies. An oligomer-selective sandwich ELISA, based on mAb38F, was set up to analyze brain extracts of the transgenic mice. The overall levels of α-synuclein oligomers/protofibrils were found to increase with age in these mice, although the levels displayed a large interindividual variation. Upon subcellular fractionation, higher levels of α-synuclein oligomers/protofibrils could be detected in the endoplasmic reticulum around the age when behavioral disturbances develop. In summary, our novel oligomer-selective α-synuclein antibodies recognize relevant pathology and should be important tools to further explore the pathogenic mechanisms in Lewy body disorders. Moreover, they could be potential candidates both for immunotherapy and as reagents in an assay to assess a potential disease biomarker.
Recent research implicates soluble aggregated forms of α-synuclein as neurotoxic species with a central role in the pathogenesis of Parkinson's disease and related disorders. The pathway by which α-synuclein aggregates is believed to follow a step-wise pattern, in which dimers and smaller oligomers are initially formed. Here, we used H4 neuroglioma cells expressing α-synuclein fused to hemi:GFP constructs to study the effects of α-synuclein monoclonal antibodies on the early stages of aggregation, as quantified by Bimolecular Fluorescence Complementation assay. Widefield and confocal microscopy revealed that cells treated for 48 h with monoclonal antibodies internalized antibodies to various degrees. C-terminal and oligomer-selective α-synuclein antibodies reduced the extent of α-synuclein dimerization/oligomerization, as indicated by decreased GFP fluorescence signal. Furthermore, ELISA measurements on lysates and conditioned media from antibody treated cells displayed lower α-synuclein levels compared to untreated cells, suggesting increased protein turnover. Taken together, our results propose that extracellular administration of monoclonal antibodies can modify or inhibit early steps in the aggregation process of α-synuclein, thus providing further support for passive immunization against diseases with α-synuclein pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.