Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.
We study a mechanism of iceberg breakup that may act together with the recognized melt and wave-induced decay processes. Our proposal is based on observations from a recent field experiment on a large ice island in Baffin Bay, East Canada. We observed that successive collapses of the overburden from above an unsupported wavecut at the iceberg waterline created a submerged foot fringing the berg. The buoyancy stresses induced by such a foot may be sufficient to cause moderate-sized bergs to break off from the main berg. A mathematical model is developed to test the feasibility of this mechanism. The results suggest that once the foot reaches a critical length, the induced stresses are sufficient to cause calving. The theoretically predicted maximum stable foot length compares well to the data collected in situ. Further, the model provides analytical expressions for the previously observed "rampart-moat" iceberg surface profiles.
Strong positive relationships between cloud fraction (fc) and aerosol optical depth (τ) have been reported. Data retrieved from the MODerate resolution Imaging Spectroradiometer (MODIS) instrument show positive fc–τ relationships across most of the globe. A global mean fc increase of approximately 0.2 between low and high τ conditions is found for both ocean and land. However, these relationships are not necessarily due to cloud–aerosol interactions. Using state-of-the-art Monitoring Atmospheric Composition and Climate (MACC) reanalysis-forecast τ data, which should be less affected by retrieval artefacts, it is demonstrated that a large part of the observed fc–τ signal may be due to cloud contamination of satellite-retrieved τ. For longer MACC forecast time steps of 24 h, which likely contain less cloud contamination, some negative fc–τ relationships are found. The global mean fc increase between low and high τ conditions is reduced to 0.1, suggesting that cloud contamination may account for approximately one half of the satellite-retrieved increase in fc. ECHAM5-HAM general circulation model (GCM) simulations further demonstrate that positive fc–τ relationships may arise due to covariation with relative humidity. Widespread negative simulated fc–τ relationships in the tropics are shown to arise due to scavenging of aerosol by convective precipitation. Wet scavenging events are likely poorly sampled in satellite-retrieved data, because the properties of aerosol below clouds cannot be retrieved. Quantifying the role of wet scavenging, and assessing GCM representations of this important process, remains a challenge for future observational studies of aerosol–cloud–precipitation interactions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.