Chassis system components such as dampers have a significant impact on vehicle stability, driving safety, and driving comfort. Therefore, monitoring and diagnosing the defects of these components is necessary. Currently, this task is based on the driver’s perception of component defects in series production vehicles, even though model-based approaches in the literature exist. As we observe an increased availability of data in modern vehicles and advances in the field of deep learning, this paper deals with the analysis of the performance of Convolutional Neural Networks (CNN) for the diagnosis of automotive damper defects. To ensure a broad applicability of the generated diagnosis system, only signals of a classic Electronic Stability Control (ESC) system, such as wheel speeds, longitudinal and lateral vehicle acceleration, and yaw rate, were used. A structured analysis of data pre-processing and CNN configuration parameters were investigated in terms of the defect detection result. The results show that simple Fast Fourier Transformation (FFT) pre-processing and configuration parameters resulting in small networks are sufficient for a high defect detection rate.
ZusammenfassungDer vorliegende Beitrag stellt ein Konzept zur Fahrbahngüteschätzung mittels autoregressiver Filterung an einem Zweiachs-Fahrzeug vor. Für einen durch Kalman-Filterung gewonnenen Schätzwert der Unebenheitsanregung kann mittels autoregressiver Filterung die spektrale Unebenheitsdichte und damit die aktuelle Fahrbahngüte gewonnen werden. Diese wird in das Kalman-Filter zurückgeführt, wodurch jenes fahrbahnadaptiv wird und die Schätzgüte erhöht werden kann. Das Konzept wurde an einem Viertelfahrzeugprüfstand realisiert. Hierzu werden Messungen aufgezeigt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.