The communication between tumor-derived elements and stroma in the metastatic niche has a critical role in facilitating cancer metastasis. Yet, the mechanisms tumor cells use to control metastatic niche formation are not fully understood. Here we report that in the lung metastatic niche, high-metastatic hepatocellular carcinoma (HCC) cells exhibit a greater capacity to convert normal fibroblasts to cancer-associated fibroblasts (CAFs) than low-metastatic HCC cells. We show high-metastatic HCC cells secrete exosomal miR-1247-3p that directly targets B4GALT3, leading to activation of β1-integrin–NF-κB signaling in fibroblasts. Activated CAFs further promote cancer progression by secreting pro-inflammatory cytokines, including IL-6 and IL-8. Clinical data show high serum exosomal miR-1247-3p levels correlate with lung metastasis in HCC patients. These results demonstrate intercellular crosstalk between tumor cells and fibroblasts is mediated by tumor-derived exosomes that control lung metastasis of HCC, providing potential targets for prevention and treatment of cancer metastasis.
Vitamin C (L-ascorbic acid, ascorbate, VC) is a potential chemotherapeutic agent for cancer patients. However, the anti-tumor effects of pharmacologic VC on hepatocellular carcinoma (HCC) and liver cancer stem cells (CSCs) remain to be fully elucidated. Panels of human HCC cell lines as well as HCC patient-derived xenograft (PDX) models were employed to investigate the anti-tumor effects of pharmacologic VC. The use of VC and the risk of HCC recurrence were examined retrospectively in 613 HCC patients who received curative liver resection as their initial treatment. In vitro and in vivo experiments further demonstrated that clinically achievable concentrations of VC induced cell death in liver cancer cells and the response to VC was correlated with sodium-dependent vitamin C transporter 2 (SVCT-2) expressions. Mechanistically, VC uptake via SVCT-2 increased intracellular ROS, and subsequently caused DNA damage and ATP depletion, leading to cell cycle arrest and apoptosis. Most importantly, SVCT-2 was highly expressed in liver CSCs, which promoted their self-renewal and rendered them more sensitive to VC. In HCC cell lines xenograft models, as well as in PDX models, VC dramatically impaired tumor growth and eradicated liver CSCs. Finally, retrospective cohort study showed that intravenous VC use was linked to improved disease-free survival (DFS) in HCC patients (adjusted HR = 0.622, 95% CI 0.487 to 0.795, p < 0.001). Our data highlight that pharmacologic VC can effectively kill liver cancer cells and preferentially eradicate liver CSCs, which provide further evidence supporting VC as a novel therapeutic strategy for HCC treatment.
It is well known that c-Src has important roles in tumorigenesis. However, it remains unclear whether c-Src contributes to metabolic reprogramming. Here we find that c-Src can interact with and phosphorylate hexokinases HK1 and HK2, the rate-limiting enzymes in glycolysis. Tyrosine phosphorylation dramatically increases their catalytic activity and thus enhances glycolysis. Mechanistically, c-Src phosphorylation of HK1 at Tyr732 robustly decreases its Km and increases its Vmax by disrupting its dimer formation. Mutation in c-Src phosphorylation site of either HK1 or HK2 remarkably abrogates the stimulating effects of c-Src on glycolysis, cell proliferation, migration, invasion, tumorigenesis and metastasis. Due to its lower Km for glucose, HK1 rather than HK2 is required for tumour cell survival when glucose is scarce. Importantly, HK1-Y732 phosphorylation level remarkably correlates with the incidence and metastasis of various clinical cancers and may serve as a marker to predict metastasis risk of primary cancers.
The rhomboid family of genes carry out a wide range of important functions in a variety of organisms. Little is known, however, about the function of the human rhomboid family-1 gene (RHBDF1). We show here that RHBDF1 function is essential to epithelial cancer cell growth. RHBDF1 mRNA level is significantly elevated in clinical specimens of invasive ductal carcinoma of the breast, and the protein is readily detectable in human breast cancer or head and neck cancer cell lines. Silencing the RHBDF1 gene with short interfering RNA (siRNA) results in apoptosis in breast cancer MDA-MB-435 cells and autophagy in head and neck squamous cell cancer 1483 cells. The treatment also leads to significant down-modulation of activated AKT and extracellular signal-regulated kinase in the cells, suggesting that critically diminished strength of these growth signals may be the key attributes of the induction of cell death. Furthermore, silencing the RHBDF1 gene in MDA-MB-435 or 1483 xenograft tumors on athymic nude mice by using i.v. administered histidine-lysine polymer nanoparticle-encapsulated siRNA results in marked inhibition of tumor growth. Our findings indicate that RHBDF1 has a pivotal role in sustaining growth signals in epithelial cancer cells and thus may serve as a therapeutic target for treating epithelial cancers. [Mol Cancer Ther 2008;7(6):1355-64]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.