Text classification is one of the fundamental tasks in natural language processing. Recently, deep neural networks have achieved promising performance in the text classification task compared to shallow models. Despite of the significance of deep models, they ignore the fine-grained (matching signals between words and classes) classification clues since their classifications mainly rely on the text-level representations. To address this problem, we introduce the interaction mechanism to incorporate word-level matching signals into the text classification task. In particular, we design a novel framework, EXplicit interAction Model (dubbed as EXAM), equipped with the interaction mechanism. We justified the proposed approach on several benchmark datasets including both multilabel and multi-class text classification tasks. Extensive experimental results demonstrate the superiority of the proposed method. As a byproduct, we have released the codes and parameter settings to facilitate other researches.
In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current textto-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks. 1 * Equal contribution.
International audienceIn the context of a social gathering, such as a cocktail party, the memorable moments are generally captured by professional photographers or by the participants. The latter case is often undesirable because many participants would rather enjoy the event instead of being occupied by the photo-taking task. Motivated by this scenario, we propose the use of a set of cameras to automatically take photos. Instead of performing dense analysis on all cameras for photo capturing, we first detect the occurrence and location of social interactions via F-formation detection. In the sociology literature, F-formation is a concept used to define social interactions, where each detection only requires the spatial location and orientation of each participant. This information can be robustly obtained with additional Kinect depth sensors. In this paper, we propose an extended F-formation system for robust detection of interactions and interactants. The extended F-formation system employs a heat-map based feature representation for each individual, namely Interaction Space (IS), to model their location, orientation, and temporal information. Using the temporally encoded IS for each detected interactant, we propose a best-view camera selection framework to detect the corresponding best view camera for each detected social interaction. The extended F-formation system is evaluated with synthetic data on multiple scenarios. To demonstrate the effectiveness of the proposed system, we conducted a user study to compare our best view camera ranking with human's ranking using real-world dat
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.