Carbon Capture, Utilization and Storage, also referred to as Carbon Capture, Utilization and Sequestration (CCUS), is one of the novel climate mitigation technologies by which CO2 emissions are captured from sources, such as fossil power generation and industrial processes, and further either reused or stored with more attention being paid on the utilization of captured CO2. In the whole CCUS process, the dominant migration pathway of CO2 after being injected underground becomes very important information to judge the possible storage status as well as one of the essential references for evaluating possible environmental affects. Interferometric Synthetic Aperture Radar (InSAR) technology, with its advantages of extensive coverage in surface deformation monitoring and all-weather traceability of the injection processes, has become one of the promising technologies frequently adopted in worldwide CCUS projects. In this study, taking the CCUS sequestration area in Shizhuang Town, Shanxi Province, China, as an example, unmanned aerial vehicle (UAV) photography measurement technology with a 3D surface model at a resolution of 5.3 cm was applied to extract the high-resolution digital elevation model (DEM) of the study site in coordination with InSAR technology to more clearly display the results of surface deformation monitoring of the CO2 injection area. A 2 km surface heaving dynamic processes before and after injection from June 2020 to July 2021 was obtained, and a CO2 migration pathway northeastward was observed, which was rather consistent with the monitoring results by logging and micro-seismic studies. Additionally, an integrated monitoring scheme, which will be the trend of monitoring in the future, is proposed in the discussion.
Carbon neutrality is a goal the world is striving to achieve in the context of global warming. Carbon capture and storage (CCS) has received extensive attention as an effective method to reduce carbon dioxide (CO2) in the atmosphere. What follows is the migration pathway and leakage monitoring after CO2 injection. Interferometric synthetic aperture radar (InSAR) technology, with its advantages of extensive coverage in surface deformation monitoring and all-weather traceability of the injection processes, has become one of the promising technologies frequently adopted in worldwide CCS projects. However, there is no mature evaluation system to determine whether InSAR technology is suitable for each CO2 sequestration area. In this study, a new evaluation model is proposed based on the eight factors that are selected from the principle of the InSAR technique and the unique characteristics of the CO2 sequestration area. According to the proposed model, the feasibility of InSAR monitoring is evaluated for the existing typical sequestration areas in the world. Finally, the challenges and prospects of InSAR in the CCS project are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.