Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.
There is a critical unmet need to tailor chemotherapies to individual patients. Personalized approaches could lower treatment toxicity, improve the patient’s quality of life, and ultimately reduce mortality. However, existing models of drug activity (based on tumor cells in culture or animal models) cannot accurately predict how drugs act in patients in time to inform the best possible treatment. Here we demonstrate a microfluidic device that integrates live slice cultures with an intuitive multi well platform that allows for exposing the slices to multiple compounds at once or in sequence. We demonstrate the response of live mouse brain slices to a range of drug doses in parallel. Drug response is measured by imaging of markers for cell apoptosis and for cell death. The platform has the potential to allow for identifying the subset of therapies of greatest potential value to individual patients, on a timescale rapid enough to guide therapeutic decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.