A 5-year-old male presented with spinal cord drop metastasis from a recurrent neurocytoma. Topotecan (0.5 mg/m(2)) and carboplatin (250 mg/m(2)) were administered on days 1-3 and ifosfamide (1,800 mg/m(2)) on days 1-5, every 21 days, for three cycles and resulted in complete response without severe complications. A literature review yielded 20 patients with central neurocytoma but no complete responses. The complete response of central neurocytoma to chemotherapy only reported here should be helpful to those caring for patients with this rare tumor.
Research has exposed cancer to be a heterogeneous disease with a high degree of inter-tumoral and intra-tumoral variability. Individual tumors have unique profiles, and these molecular signatures make the use of traditional histology-based treatments problematic. The conventional diagnostic categories, while necessary for care, thwart the use of molecular information for treatment as molecular characteristics cross tissue types.This is compounded by the struggle to keep abreast the scientific advances made in all fields of science, and by the enormous challenge to organize, cross-reference, and apply molecular data for patient benefit. In order to supplement the site-specific, histology-driven diagnosis with genomic, proteomic and metabolomics information, a paradigm shift in diagnosis and treatment of patients is required.While most physicians are open and keen to use the emerging data for therapy, even those versed in molecular therapeutics are overwhelmed with the amount of available data. It is not surprising that even though The Human Genome Project was completed thirteen years ago, our patients have not benefited from the information. Physicians cannot, and should not be asked to process the gigabytes of genomic and proteomic information on their own in order to provide patients with safe therapies. The following consensus summary identifies the needed for practice changes, proposes potential solutions to the present crisis of informational overload, suggests ways of providing physicians with the tools necessary for interpreting patient specific molecular profiles, and facilitates the implementation of quantitative precision medicine. It also provides two case studies where this approach has been used.
Diseases of the esophagus, damage of the esophagus due to injury or congenital defects during fetal esophageal development, i.e., esophageal atresia (EA), typically require surgical intervention to restore esophageal continuity. The development of tissue engineered tubular structures would improve the treatment options for these conditions by providing an alternative that is organ sparing and can be manufactured to fit the exact dimensions of the defect. An autologous tissue engineered Cellspan Esophageal ImplantTM (CEI) was surgically implanted into piglets that underwent surgical resection of the esophagus. Multiple survival time points, post-implantation, were analyzed histologically to understand the tissue architecture and time course of the regeneration process. In addition, we investigated CT imaging as an “in-life” monitoring protocol to assess tissue regeneration. We also utilized a clinically relevant animal management paradigm that was essential for long term survival. Following implantation, CT imaging revealed early tissue deposition and the formation of a contiguous tissue conduit. Endoscopic evaluation at multiple time points revealed complete epithelialization of the lumenal surface by day 90. Histologic evaluation at several necropsy time points, post-implantation, determined the time course of tissue regeneration and demonstrated that the tissue continues to remodel over the course of a 1-year survival time period, resulting in the development of esophageal structural features, including the mucosal epithelium, muscularis mucosae, lamina propria, as well as smooth muscle proliferation/migration initiating the formation of a laminated adventitia. Long term survival (1 year) demonstrated restoration of oral nutrition, normal animal growth and the overall safety of this treatment regimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.