Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in >2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH 2]Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite. drug design ͉ malaria ͉ structural biology ͉ protease T here are 300-500 million cases of clinical malaria annually, and 1.4-2.6 million deaths. Malaria is caused by apicomplexan parasites of the genus Plasmodium, with Plasmodium falciparum the most lethal of the 4 species that infect humans. Clinical manifestations begin when parasites enter erythrocytes, and most antimalaria drugs, such as chloroquine, exert their action by preventing the parasite development within these cells (1). As a result of the rapid spread of drug-resistant parasites, there is a constant need to identify and validate new antimalarial targets.Intraerythrocytic parasites have limited capacity for de novo amino acid synthesis and rely on degradation of host hemoglobin (Hb) to maintain protein metabolism and synthesis, and an osmotically stable environment within the erythrocyte (1-4). Within the erythrocytes, malaria parasites consume as much as 75% of the cellular Hb (1). Hb is initially degraded by the concerted action of cysteine-, aspartyl-, and metalloendoproteases, and a dipeptidase (cathepsin C) within a digestive vacuole (DV) to di-and tripeptide fragments (5, 6). These fragments are suggested to be exported to the parasite cytoplasm, where further hydrolysis to release free amino acids takes place [supporting information (SI) Fig. S1; see refs. 7 and 8].The release of amino acids involves 2 metallo-exopeptidases: an alanyl aminopeptidase, PfA-M1 (9, 10), and a leucine aminopeptidase, PfA-M17 (7,11,12). We have demonstrated that the aminopeptidase inhibitor bestatin, an antibiotic and natural analogue of the dipeptide Phe-Leu derived from the fungus Streptomyces olivoretticul, prevents P. falciparum malaria growth in culture (13,14). More recently, it was shown not only that synthetic phosphinate dipeptide analogues that inhibit metallo-aminopeptidases prevented the growth of wildty...
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, Pf A-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric Pf A-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the Pf A-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to Pf A-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in Pf A-M17 and one in Pf A-M1) in both substrate and drug binding. Our detailed understanding of the Pf A-M1 and Pf A-M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.drug design | malaria | protease | structural biology | neutral aminopeptidases
Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.
The purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) is essential for purine nucleotide and hence nucleic acid synthesis in the malaria parasite, Plasmodium falciparum. Acyclic nucleoside phosphonates (ANPs) are analogues of the nucleotide product of the reaction, comprising a purine base joined by a linker to a phosphonate moiety. K(i) values for 19 ANPs were determined for Pf HGXPRT and the corresponding human enzyme, HGPRT. Values for Pf HGXPRT were as low as 100 nM, with selectivity for the parasite enzyme of up to 58. Structures of human HGPRT in complex with three ANPs are reported. On binding, a large mobile loop in the free enzyme moves to partly cover the active site. For three ANPs, the IC(50) values for Pf grown in cell culture were 1, 14, and 46 microM, while the cytotoxic concentration for the first compound was 489 microM. These results provide a basis for the design of potent and selective ANP inhibitors of Pf HGXPRT as antimalarial drug leads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.