Next-generation sequencing of follicular lymphoma and diffuse-large B-cell lymphoma has revealed frequent somatic, heterozygous Y641 mutations in the histone methyltransferase EZH2. Heterozygosity and the presence of equal quantities of both mutant and wild-type mRNA and expressed protein suggest a dominant mode of action. Surprisingly, B-cell lymphoma cell lines and lymphoma samples harboring heterozygous EZH2 Y641 mutations have increased levels of histone H3 Lys-27-specific trimethylation (H3K27me3). Expression of EZH2 Y641F/N mutants in cells with EZH2 WT resulted in an increase of H3K27me3 levels in vivo. Structural modeling of EZH2 Y641 mutants suggests a "Tyr/Phe switch" model whereby structurally neutral, nontyrosine residues at position 641 would decrease affinity for unmethylated and monomethylated H3K27 substrates and potentially favor trimethylation. We demonstrate, using in vitro enzyme assays of reconstituted PRC2 complexes, that Y641 mutations result in a decrease in monomethylation and an increase in trimethylation activity of the enzyme relative to the wild-type enzyme. This represents the first example of a diseaseassociated gain-of-function mutation in a histone methyltransferase, whereby somatic EZH2 Y641 mutations in lymphoma act dominantly to increase, rather than decrease, histone methylation. The dominant mode of action suggests that allelespecific EZH2 inhibitors should be a future therapeutic strategy for this disease. IntroductionNon-Hodgkin lymphomas represent a diverse spectrum of distinct entities with the 2 most common types represented by follicular lymphoma and diffuse large B-cell lymphoma (DLBCL). There are 2 molecular subtypes of DLBCL based on cell-of-origin distinctions: the activated B-cell type and the germinal center B-cell (GCB) type. Both follicular lymphoma and the GCB subtype of DLBCL derive from germinal center B cells. We have shown that, in 7% of follicular lymphomas and 22% of GCB-type DLBCL, a single point mutation in EZH2, which results in a single amino-acid change at position 641, is selected for; EZH2 (Tyr641 or WT) was mutated to phenylalanine (Y641F), asparagine (Y641N), histidine (Y641H), or serine (Y641S). 1 EZH2 has been implicated as an oncoprotein often overexpressed in many solid tumors. [2][3][4] Initial analysis of the activity of Y641 variants in cell-free reconstituted Polycomb Repressive Complex 2 (PRC2) complexes using unmethylated peptides suggested that the mutations behaved as a loss of function. 1 EZH2 is the catalytic member of the PRC2; however, EZH2 alone has very weak histone-methylating activity. Other members of the PRC2 complex include EED, SUZ12, AEBP2, and RbAp48 and are required for full activity. The PRC2 complex has been shown to exhibit in vitro enzyme activity on histone peptide substrates and nucleosomes. EZH2 is a member of the Su(var)3,9, enhancer of zest, Trithorax (SET) domain containing family of histone methyltransferases (HMTases); all contain a conserved SET domain. Genetic and biochemical analysis of EZH2 SET domain ...
PURPOSE Despite undergoing allogeneic hematopoietic stem cell transplantation (HCT), patients with acute myeloid leukemia (AML) with internal tandem duplication mutation in the FMS-like tyrosine kinase 3 gene ( FLT3-ITD) have a poor prognosis, frequently relapse, and die as a result of AML. It is currently unknown whether a maintenance therapy using FLT3 inhibitors, such as the multitargeted tyrosine kinase inhibitor sorafenib, improves outcome after HCT. PATIENTS AND METHODS In a randomized, placebo-controlled, double-blind phase II trial (SORMAIN; German Clinical Trials Register: DRKS00000591), 83 adult patients with FLT3-ITD–positive AML in complete hematologic remission after HCT were randomly assigned to receive for 24 months either the multitargeted and FLT3-kinase inhibitor sorafenib (n = 43) or placebo (n = 40 placebo). Relapse-free survival (RFS) was the primary endpoint of this trial. Relapse was defined as relapse or death, whatever occurred first. RESULTS With a median follow-up of 41.8 months, the hazard ratio (HR) for relapse or death in the sorafenib group versus placebo group was 0.39 (95% CI, 0.18 to 0.85; log-rank P = .013). The 24-month RFS probability was 53.3% (95% CI, 0.36 to 0.68) with placebo versus 85.0% (95% CI, 0.70 to 0.93) with sorafenib (HR, 0.256; 95% CI, 0.10 to 0.65; log-rank P = .002). Exploratory data show that patients with undetectable minimal residual disease (MRD) before HCT and those with detectable MRD after HCT derive the strongest benefit from sorafenib. CONCLUSION Sorafenib maintenance therapy reduces the risk of relapse and death after HCT for FLT3-ITD–positive AML.
The hematopoietic system produces a large number of highly specialized cell types that are derived through a hierarchical differentiation process from a common stem cell population. miRNAs are critical players in orchestrating this differentiation. Here, we report the development and application of a high-throughput microfluidic real-time quantitative PCR (RT-qPCR) approach for generating global miRNA profiles for 27 phenotypically distinct cell populations isolated from normal adult mouse hematopoietic tissues. A total of 80,000 RT-qPCR assays were used to map the landscape of miRNA expression across the hematopoietic hierarchy, including rare progenitor and stem cell populations. We show that miRNA profiles allow for the direct inference of cell lineage relations and functional similarity. Our analysis reveals a close relatedness of the miRNA expression patterns in multipotent progenitors and stem cells, followed by a major reprogramming upon restriction of differentiation potential to a single lineage. The analysis of miRNA expression in single hematopoietic cells further demonstrates that miRNA expression is very tightly regulated within highly purified populations, underscoring the potential of single-cell miRNA profiling for assessing compartment heterogeneity.RT-qPCR | stem cell | hematopoiesis | microfluidic | single cell
Pathways defining susceptibility of normal cells to oncogenic transformation may be valuable therapeutic targets. We characterized the cell of origin and its critical pathways in MN1-induced leukemias. Common myeloid (CMP) but not granulocyte-macrophage progenitors (GMP) could be transformed by MN1. Complementation studies of CMP-signature genes in GMPs demonstrated that MN1-leukemogenicity required the MEIS1/AbdB-like HOX-protein complex. ChIP-sequencing identified common target genes of MN1 and MEIS1 and demonstrated identical binding sites for a large proportion of their chromatin targets. Transcriptional repression of MEIS1 targets in established MN1 leukemias demonstrated antileukemic activity. As MN1 relies on but cannot activate expression of MEIS1/AbdB-like HOX proteins, transcriptional activity of these genes determines cellular susceptibility to MN1-induced transformation and may represent a promising therapeutic target.
SummaryThe transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.