Shell-rib structures made of textile-reinforced composites are used in a wide range of applications to increase bending, buckling and torsional stiffness. Such composites are usually manufactured in differential construction at the preform level by assembling several textile structures or at the component level by the subsequent joining of separately manufactured shells and stiffening structures. Integral preform production is one way to overcome the disadvantages of the forenamed methods, such as high manual effort, failure during assembling or fiber distortion. Weft-knitting technology is excellent for achieving integral preforms for shell-rib components with a strong connection between the shell and the rib, especially while producing biaxial weft-knitted fabrics (BWKF) with reinforcing yarns in the warp and weft direction to improve its mechanical behavior. In this work, the possibilities of the knitting technique are investigated, and a finite element model for comparing different variants is developed and validated. A meso-scale Finite-Element-Method (FEM) model of the BWKF is used. The simulation results with the meso-scale model show a good correlation with experimental data by a description of bending strength and stiffness of different FRP configuration variations. The model can be used in further investigation of fiber-reinforced polymer (FRP) made from BWKF.
Textile reinforcements are increasingly establishing their position in the construction industry due to their high tensile properties and corrosion resistance for concrete applications. In contrast to ribbed monolithic steel bars with a defined form-fit effect, the conventional carbon rovings’ bond force is transmitted primarily by an adhesive bond (material fit) between the textile surface and the surrounding concrete matrix. As a result, relatively large bonding lengths are required to transmit bond forces, resulting in inefficient material utilization. Novel solutions such as tetrahedral profiled rovings promise significant improvements in the bonding behavior of textile reinforcements by creating an additional mechanical interlock with the concrete matrix while maintaining the high tensile properties of carbon fibers. Therefore, simulative investigations of tensile and bond behavior have been conducted to increase the transmittable bond force and bond stiffness of profiled rovings through a defined roving geometry. Geometric and material models were thus hereby developed, and tensile and pullout tests were simulated. The results of the simulations and characterizations could enable the optimization of the geometric parameters of tetrahedral profiled rovings to achieve better bond and tensile properties and provide basic principles for the simulative modeling of profiled textile reinforcements.
Bänder- und Sehnenrisse führen zu Schmerzen, Bewegungseinschränkungen, Beeinträchtigungen der Mobilität und der Lebensqualität. Daher wurde ein simulationsbasierter Ansatz angewandt, um eine flexible Technologie zur Anpassung von Textilimplantaten an die natürliche anatomische Form und das biomechanische Verhalten von Sehnen und Bändern über strukturell-mechanische und geometrische Gradienten zu entwickeln, die eine schnelle Heilung und Regeneration ermöglichen.
Recycling carbon fibers (rCF) for reuse is one approach to improve the sustainability of CFRP. However, until now, recycled carbon fiber plastics (rCFRP) had limited composite properties due to the microgeometry of the fibers, which made it difficult to use in load-bearing components. The production of hybrid yarns from rCF and PA6 fibers allows the fibers to be aligned. The geometric properties of the yarn and the individual fibers influence the mechanical properties of the composite. An approach for the modeling and simulation of hybrid yarns consisting of recycled carbon fibers and thermoplastic fibers is presented. The yarn unit cell geometry is modeled in the form of a stochastic fiber network. The fiber trajectory is modeled in form of helical curves using the idealized yarn model of Hearle et al. The variability in the fiber geometry (e.g., length) is included in form of statistical distributions. An additional compaction step ensures a realistic composite geometry. The created model is validated geometrically and by comparison with tensile tests of manufactured composites. With the validated model, multiple parameter studies investigating the influence of fiber and yarn geometry are carried out.
Tendons and ligaments are complex tissues that are necessary for human movement. Injuries occur very commonly and treatment quite often requires implants. Such implants must be adapted to the biological and structural composition of human tendons and ligaments. Thus, the objective is to realize graded, biomimetic tendon and ligament implants that are long-term resorbable. First, basic woven fabrics are fabricated from biocompatible silk fibroin yarns. Starting from the basic fabrics, gradient fabrics, with three different weave zones, are then developed and produced. In addition, fabrics with variable width and lateral warp yarn offset are fabricated on the basis of open reed weaving (ORW) technology on a modified shuttle narrow weaving loom. Meso-scale finite element models are developed in order to support the design of the gradient weaves. First, TexGen software is used to create a close to reality fabric geometry. Models are then converted into beam element models using a Python script. Results of real and virtual tensile tests show a clear relationship between the crimp of the warp yarns in the fabric structures and the resulting elongations. The additional ORW yarn system influences the stiffness. The tensile behavior of experiments and simulation agree very well, so the models are suitable for further development of woven implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.