ObjectivesThe Oxford–AstraZeneca COVID-19 vaccine (ChAdOx1 nCoV-19, Vaxzevira or Covishield) builds on two decades of research and development (R&D) into chimpanzee adenovirus-vectored vaccine (ChAdOx) technology at the University of Oxford. This study aimed to approximate the funding for the R&D of ChAdOx and the Oxford–AstraZeneca vaccine and to assess the transparency of funding reporting mechanisms.MethodsWe conducted a scoping review and publication history analysis of the principal investigators to reconstruct R&D funding the ChAdOx technology. We matched award numbers with publicly accessible grant databases. We filed freedom of information (FOI) requests to the University of Oxford for the disclosure of all grants for ChAdOx R&D.ResultsWe identified 100 peer-reviewed articles relevant to ChAdOx technology published between January 2002 and October 2020, extracting 577 mentions of funding bodies from acknowledgements. Government funders from overseas (including the European Union) were mentioned 158 times (27.4%), the UK government 147 (25.5%) and charitable funders 138 (23.9%). Grant award numbers were identified for 215 (37.3%) mentions; amounts were publicly available for 121 (21.0%). Based on the FOIs, until December 2019, the biggest funders of ChAdOx R&D were the European Commission (34.0%), Wellcome Trust (20.4%) and Coalition for Epidemic Preparedness Innovations (17.5%). Since January 2020, the UK government contributed 95.5% of funding identified. The total identified R&D funding was £104 226 076 reported in the FOIs and £228 466 771 reconstructed from the literature search.ConclusionOur study approximates that public and charitable financing accounted for 97%–99% of identifiable funding for the ChAdOx vaccine technology research at the University of Oxford underlying the Oxford–AstraZeneca vaccine until autumn 2020. We encountered a lack of transparency in research funding reporting.
Background Several drugs are being repurposed for the treatment of the coronavirus disease 2019 (COVID-19) pandemic based on in vitro or early clinical findings. As these drugs are being used in varied regimens and dosages, it is important to enable synthesis of existing safety data from clinical trials. However, availability of safety information is limited by a lack of timely reporting of overall clinical trial results on public registries or through academic publication. We aimed to analyse the evidence gap in this data by conducting a rapid review of results posting on ClinicalTrials.gov and in academic publications to quantify the number of trials missing results for drugs potentially being repurposed for COVID-19. Methods ClinicalTrials.gov was searched for 19 drugs that have been identified as potential treatments for COVID-19. Relevant clinical trials for any prior indication were listed by identifier (NCT number) and checked for results and for timely result reporting (within 395 days of the primary completion date). Additionally, PubMed and Google Scholar were searched to identify publications of results not listed on the registry. A second, blinded search of 10% of trials was conducted to assess reviewer concordance. Results Of 3754 completed trials, 1516 (40.4%) did not post results on ClinicalTrials.gov or in the academic literature. Tabular results were available on ClinicalTrials.gov for 1172 (31.2%) completed trials. A further 1066 (28.4%) had published results in the academic literature, but did not report results on ClinicalTrials.gov. Key drugs missing clinical trial results include hydroxychloroquine (37.0% completed trials unreported), favipiravir (77.8%) and lopinavir (40.5%). Conclusions There is an important evidence gap for the safety of drugs being repurposed for COVID-19. This uncertainty could cause unnecessary additional morbidity and mortality during the pandemic. We recommend caution in experimental drug use for non-severe disease and urge clinical trial sponsors to report missing results retrospectively.
Background: Both tenofovir disoproxil fumarate (TDF)/emtricitabine and tenofovir alafenamide (TAF)/emtricitabine demonstrate excellent efficacy and safety overall, but concerns remain over specific changes in markers of bone and renal function. Lower plasma tenofovir concentrations are seen with TAF and in unboosted regimens. We assess TAF vs. TDF safety with and without booster coformulation. Methods: A previous systematic review was updated with recent clinical trials. TAF vs. TDF efficacy and safety were compared in boosted and unboosted subgroups. Efficacy was measured by viral suppression. Key safety endpoints included all adverse events, serious adverse events, Grades 3–4 adverse events and adverse event discontinuation. Further specific renal and bone markers were also assessed. Results: A total of 14 clinical trials comparing TDF and TAF regimens were identified. A significant difference (P = 0.0004) in efficacy was shown in the boosted subgroup in favour of TAF, but no difference was seen in the unboosted subgroup. There were no significant differences between TAF and TDF for any of the key safety endpoints analysed. No differences were seen for the bone markers analysed. No difference was found for renal tubular events. There was a difference in risk for discontinuation due to renal adverse events when boosted (P = 0.03), but none when unboosted. Conclusion: Across all main safety endpoints, no differences between TAF and TDF are seen. Boosted TDF regimens were associated with lesser comparative efficacy than boosted TAF and a higher risk of renal event discontinuation. However, modern antiretroviral regimens are more commonly unboosted. This study finds no difference in efficacy or safety in unboosted TAF vs. TDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.