An approach for the simulation of explosions of "energetic devices" is described. In this context, an energetic device is a metal container filled with a high explosive (HE). Examples include bombs, mines, rocket motors or containers used in storage and transport of HE material. Explosions may occur due to detonation or deflagration of the HE material, with initiation resulting from either mechanical or thermal insult. This approach is applicable to a wide range of fluid-structure interaction scenarios, the application to energetic devices is chosen because it demonstrates the full capability of this methodology.Simulations of this type are characterized by a number of interesting and challenging behaviors. These include the transformation of the solid HE into highly pressurized gaseous products that initially occupy regions which formerly contained only solid material. This rapid pressurization of the container leads to large deformations at high strain rates and its eventual case rupture. Once the container breaks apart, the highly pressurized product gas that escapes the failing container generates shock waves that propagate through the initially quiescent surrounding fluid.The approach, which uses a finite-volume, multi-material compressible CFD formulation, within which solid materials are represented using a particle method known as the Material Point Method, is described, including certain of the sub-grid models required to close the governing equations. Results are first presented for "rate stick" and "cylinder test" scenarios, each of which involves detonating unconfined and confined HE material, respectively. Experimental data are available for these configurations and as such they serve as validation tests. Finally, results from an unvalidated "fast cook-off" simulation in which the HE is initiated by thermal input, which leads to a deflagration type of reaction, are shown.
The Uintah Computational Framework was developed to provide an environment for solving fluid-structure interaction problems on structured adaptive grids on large-scale, long-running, data-intensive problems. Uintah uses a combination of fluid-flow solvers and particle-based methods for solids, together with a novel asynchronous task-based approach with fully automated load balancing. Uintah demonstrates excellent weak and strong scalability at full machine capacity on XSEDE resources such as Ranger and Kraken, and through the use of a hybrid memory approach based on a combination of MPI and Pthreads, Uintah now runs on up to 262k cores on the DOE Jaguar system. In order to extend Uintah to heterogeneous systems, with ever-increasing CPU core counts and additional onnode GPUs, a new dynamic CPU-GPU task scheduler is designed and evaluated in this study. This new scheduler enables Uintah to fully exploit these architectures with support for asynchronous, outof-order scheduling of both CPU and GPU computational tasks. A new runtime system has also been implemented with an added multi-stage queuing architecture for efficient scheduling of CPU and GPU tasks. This new runtime system automatically handles the details of asynchronous memory copies to and from the GPU and introduces a novel method of pre-fetching and preparing GPU memory prior to GPU task execution. In this study this new design is examined in the context of a developing, hierarchical GPUbased ray tracing radiation transport model that provides Uintah with additional capabilities for heat transfer and electromagnetic wave propagation. The capabilities of this new scheduler design are tested by running at large scale on the modern heterogeneous systems, Keeneland and TitanDev, with up to 360 and 960 GPUs respectively. On these systems, we demonstrate significant speedups per GPU against a standard CPU core for our radiation problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.