We report the first successful use of miniature Global Positioning System loggers to track the ocean‐going behaviour of a c. 400 g seabird, the Manx Shearwater Puffinus puffinus. Breeding birds were tracked over three field seasons during the incubation and chick‐rearing periods on their foraging excursions from the large colony on Skomer Island, Pembrokeshire, UK. Foraging effort was concentrated in the Irish Sea. Likely foraging areas were identified to the north, and more diffusely to the west of the colony. No foraging excursions were recorded significantly to the south of the colony, conflicting with the conclusions of earlier studies based on ringing recoveries and observations. We discuss several explanations including the hypothesis that foraging may have shifted substantially northwards in recent decades. We found no obvious relationship between birds’ positions and water depth, although there was a suggestion that observations at night were in shallower water than those during the day. We also found that, despite the fact that Shearwaters can be observed rafting off‐shore from their colonies in the hours prior to making landfall at night, breeding birds are usually located much further from the colony in the last 8 h before arrival, a finding that has significance for the likely effectiveness of marine protection areas if they are only local to the colony. Short sequences of precise second‐by‐second fixes showed that movement speeds were bimodal, corresponding to sitting on the water (most common at night and around midday) and flying (most common in the morning and evening), with flight behaviour separable into erratic (indicative of searching for food) and directional (indicative of travelling). We also provide a first direct measurement of mean flight speed during directional flight (c. 40 km/h), slower than a Shearwater's predicted maximum range velocity, suggesting that birds are exploiting wave or dynamic soaring during long‐distance travel.
BackgroundGeneralist predators may vary their diet and use of habitat according to both internal state (e.g. breeding stage) and external (e.g. weather) factors. Lesser black-backed gulls Larus fuscus (Linnaeus 1758) are dietary generalists, foraging in both terrestrial and marine habitats during breeding. We investigate what affects the gulls’ propensity to forage at sea or on land. We assess the importance of terrestrial foraging to gulls in the Baltic Sea (sub. sp. L. f. fuscus), looking especially at their use of agricultural fields.ResultsThrough the GPS tracking of 19 individuals across 3 years we tracked 1038 foraging trips and found that 21.2 % of foraging trips were predominantly terrestrial, 9.0 % were a mix of terrestrial and marine, and 68.5 % were exclusively marine. Terrestrial trips were (1) more frequent when departing around sunrise, whereas marine trips occurred throughout the day. Additionally, trips with mostly land-based foraging decreased as the breeding season progressed, suggesting dietary switching coincident with the onset of chick provisioning. (2) During cloudy and cold conditions terrestrial foraging trips were more likely. (3) We found no differences between sexes in their land-based foraging strategy. (4) Gull individuals showed great variation in foraging strategy. Using observations of agricultural fields, carried out for one year, we found that (5) gulls preferentially foraged on fields with short vegetation, and there was a positive association with occurrence of waders and other species of gulls. (6) The availability and use of these preferred fields decreased through the breeding period.ConclusionsThis study found high prevalence of terrestrial foraging during early breeding as well as support for dietary switching early in the breeding season. The overall tendency for marine or terrestrial foraging was consistent within individuals, with gull identity accounting for much of the variation observed in foraging trips. Our results suggest that anthropogenic terrestrial food sources may play a role in the low breeding success of these gulls through either variation in quantity and/or quality. Finally, our study demonstrates the potential of combining data from GPS-tracking of individual animals with the ‘ground-truthing’ of habitat visited to elucidate the otherwise nebulous behavior of a generalist predator.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-016-0078-5) contains supplementary material, which is available to authorized users.
14GPS and time-depth recorders were deployed in combination to investigate foraging 15 behaviour of common murres (Uria aalge) breeding at Stora Karlsö island, Baltic Sea during 16 the chick rearing period. In the pre-breeding period the main prey species sprat (Sprattus
For studies of how birds control their altitude, seabirds are of particular interest because they forage offshore where the visual environment can be simply modelled by a flat world textured by waves then generating only ventral visual cues. This study suggests that optic flow, i.e. the rate at which the sea moves across the eye’s retina, can explain gulls’ altitude control over seas. In particular, a new flight model that includes both energy and optical invariants helps explain the gulls’ trajectories during offshore takeoff and cruising flight. A linear mixed model applied to 352 flights from 16 individual lesser black backed gulls ( Larus fuscus ) revealed a statistically significant optic flow set-point of ca 25° s −1 . Thereafter, an optic flow-based flight model was applied to 18 offshore takeoff flights from nine individual gulls. By introducing an upper limit in climb rate on the elevation dynamics, coupled with an optic flow set-point, the predicted altitude gives an optimized fit factor value of 63% on average (30–83% in range) with respect to the GPS data. We conclude that the optic flow regulation principle helps gulls to adjust their altitude over sea without having to directly measure their current altitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.