Plastics based materials are frequently used in packaging and can be seen universally in both the developed and developing societies. At present, most of the currently used food packaging materials are non-degradable and are creating serious environmental problems. New technologies are being explored and developed to study the complex interaction between the food packaging materials and food. For example, nanocomposite of cellulose constitute environmentally friendly packaging, which is easily recycled by combustion and requires low power consumption in production. There are several such biodegradable materials which are available at a low price, have good mechanical properties and allow disposal in the soil. This is advantageous because biological degradation produces only carbon dioxide, water, and inorganic compounds to name a few. It has also been discovered that biodegradable plastics made of such materials can be disposed of together with organic waste. The widespread use of biopolymers in place of standard plastics would help to reduce the weight of waste. Therefore, biodegradable materials take part in the natural cycle "from nature to nature" and play an important role for environmental sustainability. So in this article, we briefly summarizes the different characteristic of biodegradable polymers being used in food packaging applications.
Article citation info: (*) Tekst artykułu w polskiej wersji językowej dostępny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl Żebrowski r, wAlczAk M, klepkA T, pAsierbiewicz k. effect of the shot peening on surface properties of Ti-6Al-4V alloy produced by means of DMls technology. eksploatacja i Niezawodnosc -Maintenance and reliability 2019; 21 ( 1): 46-53, http://dx.doi.org/10.17531/ ein.2019.1.6. remigiusz Żebrowski Mariusz wAlczAk Tomasz klepkA kamil pAsierbiewicz EffEct of thE shot pEEning on surfacE propErtiEs of ti-6al-4V alloy producEd by mEans of dmls tEchnology WpłyW nagniatania strumiEnioWEgo na WłaściWości EksploatacyjnE stopu ti-6al-4V uzyskanEgo tEchnologią przyrostoWą dmls* The state of the surface layer and biocompatibility are the key parameters contributing to successful implantation of prostheses such as bone implants which are now increasingly often produced by means of DMLS technologies. The analysis of these factors and proper selection of material are required in order to determine the most favourable technological parameters contributing to long term functioning in course of their presence in human body. Therefore, the purpose of the present paper is to investigate the effect of shot peening on the state of the surface layer and corrosion resistance of specimens made of Ti-6Al-4V titanium alloy produced in Direct Metal Laser Sintering (DMLS) process. The specimens have been produced by means of EOSINT M280 system dedicated for laser sintering of metal powders and their surfaces have been subjected to the shot peening process under three different working pressures (0.2, 0.3 and 0.4 MPa) and by means of three different media i.e. CrNi steel shot, crushed nut shells and ceramic balls based on ZrO 2 . It has been found that the process conditions i.e. working pressure in course of shot peening and proper selection of applied shot will make it possible to achieve the properties in modified material sufficient to ensure that assumed functions associated with the improvement of surface layer condition are invariable during required period in specified implant operation conditions. In such case, these factors have been determined in course of microhardness tests, evaluation of surface development degree as well as potentiodynamic tests. The increase of working pressure caused deteriorated corrosion resistance. Simultaneously, it has been found the corrosion resistance was most satisfactory for the surfaces modified by means of: ceramic balls based on ZrO 2 > crushed nut shells > CrNi steel shot correspondingly.
The synthesis, thermal, and mechanical properties of epoxy resin composites incorporating waste fibers of hemp were studied. Five different systems with increasing quantity of the eco-filler were obtained. For the synthesis of polymeric materials, the commercial epoxy resins Epidian® 5 and triethylenetetramine (TETA) were applied as crosslinking agents. The composites were obtained based on the polyaddition reaction of an amine group with an epoxide ring. ATR/FT-IR (Attenuated Total Reflection-Fourier Transform Infrared) analysis was used to confirm the chemical structure of the composites and the course of curing processes. Moreover, the influence of the eco-friendly components on the mechanical properties was determined, while thermal properties of the materials were investigated by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Dynamic mechanical studies (DMA) and Shore hardness tests of the obtained polymers were also carried out. The DSC curves and DMA analysis revealed that all materials were characterized by a similar glass transition range. Furthermore, the DMA and hardness measurements of the composites demonstrated an increasing elasticity with the increase in the amount of eco-filler present in the compositions.
The preparation and the thermal and mechanical characteristics of lignin-containing polymer biocomposites were studied. Bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.GDA) was used as the main monomer, and butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) or styrene (St) was used as the reactive diluent. Unmodified lignin (L) or lignin modified with methacryloyl chloride (L-M) was applied as an ecofriendly component. The influences of the lignin, its modification, and of the type of reactive diluent on the properties of the composites were investigated. In the biocomposites with unmodified lignin, the lignin mainly acted as a filler, and it seemed that interactions occurred between the hydroxyl groups of the lignin and the carbonyl groups of the acrylates. When methacrylated lignin was applied, it seemed to take part in the creation of a polymer network. When styrene was added as a reactive diluent, the biocomposites had a more homogeneous structure, and their thermal resistance was higher than those with acrylate monomers. The use of lignin and its methacrylic derivative as a component in polymer composites promotes sustainability in the plastics industry and can have a positive influence on environmental problems related to waste generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.