A fast quantum-mechanical approach, density-functional tight-binding combined with the fragment molecular orbital method and periodic boundary conditions, is used to optimize atomic coordinates and cell parameters for a set of protein crystals: 1ETL, 5OQZ, 3Q8J, 1CBN, and 2VB1. Good agreement between experimental and calculated structures is obtained for both atomic coordinates and cell parameters. Sterical clashes present in the experimental structures are corrected by simulations. The partition analysis is extended to treat periodic boundary conditions and applied to analyze protein−solvent interactions in crystals.
For gaining insights into interactions in periodic systems, an analysis is developed based on the fragment molecular orbital method combined with periodic boundary conditions. The adsorption energy is decomposed into guest and surface polarization and deformation energy, guest−surface and guest−guest interactions, and the vibrational free energy. The analysis is applied to the adsorption of guest molecules to Ih (001) ice surface. The cooperativity effects result in a non-linear change in the adsorption energy with coverage due to many-body effects. The role of dispersion is found to be dominant for guests with long hydrophobic tails. A rule is proposed relating the length of the alkyl tail with the formation of the guest layer. The computed binding enthalpies are in good agreement with experimental values. For high coverage, adsorbed molecules can form an ordered layer known as self-assembled monolayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.