Nowadays, the Closed-Circuit Television (CCTV) surveillance system is being utilized in order to keep peace and provide security to people. There are several defects in the video surveillance system, such as: picture is indistinct, anomalies cannot be identified automatically, a lot of storage spaces are needed to save the surveillance information, and prices remain relatively high. This paper describes the design and implementation of a low-cost system monitoring based on Raspberry Pi, a single board computer which follows Motion Detection algorithm written in Python as a default programming environment. In addition, the system uses the motion detection algorithm to significantly decrease storage usage and save investment costs. The algorithm for motion detection is being implemented on Raspberry Pi, which enables live streaming camera along with detection of motion. The live video camera can be viewed from any web browser, even from mobile in real-time.
We consider the problem of similarity search over the large datasets in the distributed environment. The proposed framework employs the Vp-Tree algorithm that integrated on top of the MapReduce framework to achieve good performance as well as meet the scalability and fault tolerance requirements for the system while data scale up. Since VP-Tree algorithm was implemented initially for partition and searching data in the local disk access, we proposed a new approach to using it in the parallel environment. The key point of the Vp-Tree algorithm is that it distributed the similar data points into groups, thereby reducing number of data need to scan during the searching stage. Consequently, the response time of the entire system has been improved. Otherwise, we used an open source computer vision library OpenCV for detect the similarity among images in the dataset. We evaluate the performance of our proposed framework using a synthetic data to show the positive of our approach. The experiment shows that our proposed framework achieves 57% improvement in response time in comparison with running searching job in tradition Hadoop framework. We also compared our application running time on Docker container against VM-based environment. The result points out that deploy our system over Docker container provide higher performance than VM-based environment in term of response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.