Ceroplastes Gray (wax scales) is one of the genera of Coccidae, most species of which are considered to be serious economic pests. However, identification of Ceroplastes species is always difficult owing to the shortage of easily distinguishable morphological characters. Mitochondrial cytochrome c oxidase I (COI) sequences (or DNA barcodes) and the D2 expansion segments of the large subunit ribosomal RNA gene 28S were used for accurate identification of six Ceroplastes species (C. floridensis Comstock, C. japonicus Green, C. ceriferus (Fabricius), C. pseudoceriferus Green, C. rubens Maskell and C. kunmingensis Tang et Xie) from 20 different locations in China. For COI data, low G·C content was found in all species, averaging about 20.4%. Sequence divergences (K2P) between congeneric species averaged 12.19%, while intra-specific divergences averaged 0.42%. All 112 samples fell into six reciprocally monophyletic clades in the COI neighbour-joining (NJ) tree. The NJ tree inferred from 28S showed almost same results, but samples of two closely related species, C. ceriferus and C. pseudoceriferus, were clustered together. This research indicates that the standard barcode region of COI can efficiently identify similar Ceroplastes species. This study provides an example of the usefulness of barcoding for Ceroplastes identification.
An efficient and versatile synthetic approach to NHC-based organometallic polymers has been developed by a simple three-step synthesis. A novel brush polymer having imidazolium salt side chains (P2) was firstly synthesized through postpolymerization modification of P1, which permits access to Ag(I)-NHC-based side chain polymer (P3) at room temperature in high yield. P3 was applied as a carbene transfer agent to form a Pd-NHC-containing polymer (P4) by the transmetallation reaction of Ag(I)-NHCs in the side chains. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis indicated that 77% of Ag(I)-NHCs in the side chains of P3 were transmetallated. The resulting Pd-NHC-containing polymer (P4) showed high catalytic activity and reusability in the Suzuki reactions of aryl chlorides and aryl boronic acids. This novel Pd-NHC-containing polymeric catalyst was used five times and still remained active giving the desired biaryl products in 70% yield in the fifth run of the cross-coupling reaction of deactivated 4-chloroanisole with phenylboronic acid.
Low‐valent titanium readily prepared in situ from TiCl4 and Mg powder in THF is found to be an active agent for the reduction of amides which were previously considered to be inert towards low‐valent titanium. The reaction proceeds under very mild conditions, and is applicable to all types of amides, primary, secondary and tertiary, to produce the corresponding amines in good to excellent yields. This new finding provides a practical, convenient and general method for the important transformation of amides to amines. A plausible reaction mechanism is proposed.magnified image
A MOF named [(CH 3 )NH 2 ] [H 2 N(CH 3 ) 2 ][ZnTNC4A] ⋅ 4H 2 O (ZnTNC4A) was synthesized by a resorcinol[4]arene functionalized tetracarboxylic acid ligand (TNC4A = 2,8,14,12,18,10,16,arene). The three-dimensional framework with one-dimensional channels of ZnTNC4A was characterized by elemental analysis, powder X-ray diffraction, thermogravim-etry, UV-vis diffuse reflection spectrum, infrared spectrum and N 2 adsorption analyse. In addition, ZnTNC4A shows the ability of selective adsorption of methylene blue with a pseudosecond order kinetic model. The selective adsorption kinetics of a series of dyes showed that the ion exchanged separation process was related to the size and charge of organic dyes.
The title protocol is advantageous with respect to the use of odorless and stable Bunte salts as sulfenylating agents and iodine as non metallic catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.