ϭϳThe present study reports arsenic speciation analysis in edible Shiitake (Lentinula ϭϴ edodes) products. The study focused on the extraction, and accurate quantification of ϭϵ inorganic arsenic (iAs), the most toxic form of arsenic, which was selectively separated ϮϬ and determined using anion exchange LC-ICPMS. A wide variety of edible Shiitake Ϯϭ products (fresh mushrooms, food supplements, canned and dehydrated) were purchased ϮϮ and analysed. A cultivated Shiitake grown under controlled conditions was also Ϯϯ analysed. The extraction method showed satisfactory extraction efficiencies (>90%) and Ϯϰ column recoveries (>85%) for all samples. Arsenic speciation revealed that iAs was the
This paper reports arsenic speciation in edible seaweed (from the Galician coast, northwestern Spain) produced for human consumption. Chondrus crispus , Porphyra purpurea , Ulva rigida , Laminaria ochroleuca , Laminaria saccharina , and Undaria pinnatifida were analyzed. The study focused on arsenosugars, the most frequently occurring arsenic species in algae. As(III) and As(V) were also determined in aqueous extracts. Total arsenic in the samples was determined by microwave digestion and inductively coupled plasma mass spectrometry (ICPMS). For arsenic speciation, a water extraction especially suitable for arsenosugars was used, and the arsenic species were analyzed by liquid chromatography with both anionic and cationic exchange and ICPMS detection (LC-ICPMS). The total arsenic content of the alga samples ranged from 5.8 to 56.8 mg As kg(-1). The mass budgets obtained in the extracts (column recovery × extraction efficiency) ranged from 38 to 92% except for U. pinnatifida (4%). The following compounds were detected in the extracts: arsenite (As(III)), arsenate (As(V)), methylarsonate (MA), dimethylarsinate (DMA), sulfonate sugar (SO(3)-sug), phosphate sugar (PO(4)-sug), arsenobetaine (AB), and glycerol sugar (Gly-sug). The highest concentrations corresponded to the arsenosugars.
An analytical method for determination of arsenic species (inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO) and arsenocholine (AC)) in Brazilian and Spanish seafood samples is reported. This study was focused on extraction and quantification of inorganic arsenic (iAs), the most toxic form. Arsenic speciation was carried out via LC with both anionic and cationic exchange with ICP-MS detection (LC-ICP-MS). The detection limits (LODs), quantification limits (LOQs), precision and accuracy for arsenic species were established. The proposed method was evaluated using eight reference materials (RMs). Arsenobetaine was the main species found in all samples. The total and iAs concentration in 22 seafood samples and RMs ranged between 0.27-35.2 and 0.02-0.71 mg As kg(-1), respectively. Recoveries ranging from 100% to 106% for iAs, based on spikes, were achieved. The proposed method provides reliable iAs data for future risk assessment analysis.
A full validation of inorganic arsenic (iAs), methylarsonic acid (MA), and dimethyl arsinic acid (DMA) in several types of rice and rice-based infant cereals is reported. The analytical method was developed and validated in two laboratories. The extraction of the As species was performed using nitric acid 0.2 % and hydrogen peroxide 1 %, and the coupled system liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) was used for speciation measurements. Detection limit (DL), quantification limit, linearity, precision, trueness, accuracy, selectivity, as well as expanded uncertainty for iAs, MA, and DMA were established. The certified reference materials (CRMs) (NMIJ 7503a, NCS ZC73008, NIST SRM 1568a) were used to check the accuracy. The method was shown to be satisfactory in two proficiency tests (PTs). The broad applicability of the method is shown from the results of analysis of 29 samples including several types of rice, rice products, and infant cereal products. Total As ranged from 40.1 to 323.7 μg As kg -1 . From the speciation results, iAs was predominant, and DMA was detected in some samples while MA was not detected in any sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.