IMPORTANCE Schizophrenia and bipolar disorder are severe and complex brain disorders characterized by substantial clinical and biological heterogeneity. However, case-control studies often ignore such heterogeneity through their focus on the average patient, which may be the core reason for a lack of robust biomarkers indicative of an individual's treatment response and outcome.OBJECTIVES To investigate the degree to which case-control analyses disguise interindividual differences in brain structure among patients with schizophrenia and bipolar disorder and to map the brain alterations linked to these disorders at the level of individual patients. DESIGN, SETTING, AND PARTICIPANTSThis study used cross-sectional, T1-weighted magnetic resonance imaging data from participants recruited for the Thematically Organized Psychosis study from October 27, 2004, to October 17, 2012. Data were reanalyzed in 2017 and 2018. Patients were recruited from inpatient and outpatient clinics in the Oslo area of Norway, and healthy individuals from the same catchment area were drawn from the national population registry.MAIN OUTCOMES AND MEASURES Interindividual differences in brain structure among patients with schizophrenia and bipolar disorder. Voxel-based morphometry maps were computed, which were used for normative modeling to map the range of interindividual differences in brain structure. RESULTS Thisstudy included 218 patients with schizophrenia spectrum disorders (mean [SD] age, 30 [9.3] years; 126 [57.8%] male), of whom 163 had schizophrenia (mean [SD] age, 31 [8.7] years; 105 [64.4%] male) and 190 had bipolar disorder (mean [SD] age, 34 [11.3] years; 79 [41.6%] male), and 256 healthy individuals (mean [SD] age, 34 [9.5] years; 140 [54.7%] male). At the level of the individual, deviations from the normative model were frequent in both disorders but highly heterogeneous. Overlap of more than 2% among patients was observed in only a few loci, primarily in frontal, temporal, and cerebellar regions. The proportion of alterations was associated with diagnosis and cognitive and clinical characteristics within clinical groups. Patients with schizophrenia, on average, had significantly reduced gray matter in frontal regions, cerebellum, and temporal cortex. In patients with bipolar disorder, mean deviations were primarily present in cerebellar regions.CONCLUSIONS AND RELEVANCE This study found that group-level differences disguised biological heterogeneity and interindividual differences among patients with the same diagnosis. This finding suggests that the idea of the average patient is a noninformative construct in psychiatry that falls apart when mapping abnormalities at the level of the individual patient. This study presents a workable route toward precision medicine in psychiatry.
The brain's ability to alter its functional and structural architecture in response to experience and learning has been extensively studied. Mental stimulation might serve as a reserve mechanism in brain aging, but macrostructural brain changes in response to cognitive training have been demonstrated in young participants only. We examined the short-term effects of an intensive memory training program on cognition and brain structure in middle-aged and elderly healthy volunteers. The memory trainers completed an 8-week training regimen aimed at improving verbal source memory utilizing the Method of Loci (MoL), while control participants did not receive any intervention. Both the memory trainers and the controls underwent magnetic resonance imaging (MRI) scans and memory testing pre and post 8 weeks of training or no training, respectively. Cortical thickness was automatically measured across the cortical mantle, and data processing and statistical analyses were optimized for reliable detection of longitudinal changes. The results showed that memory training improved source memory performance. Memory trainers also showed regional increases in cortical thickness compared with controls. Furthermore, thickness change in the right fusiform and lateral orbitofrontal cortex correlated positively with improvement in source memory performance, suggesting a possible functional significance of the structural changes. These findings demonstrate that systematic mental exercise may induce short-term structural changes in the aging human brain, indicating structural brain plasticity in elderly. The present study included short-term assessments, and follow-up studies are needed in order to assess whether such training indeed alters the long-term structural trajectories.
A growing body of research indicates benefits of cognitive training in older adults, but the neuronal mechanisms underlying the effect of cognitive intervention remains largely unexplored. Neuroimaging methods are sensitive to subtle changes in brain structure and show potential for enhancing our understanding of both aging- and training-related neuronal plasticity. Specifically, studies using diffusion tensor imaging (DTI) suggest substantial changes in white matter (WM) in aging, but it is not known whether cognitive training might modulate these structural alterations. We used tract-based spatial statistics (TBSS) optimized for longitudinal analysis to delineate the effects of 8 weeks intensive memory training on WM microstructure. 41 participants (mean age 61 years) matched for age, sex and education were randomly assigned to an intervention or control group. All participants underwent MRI-scanning and neuropsychological assessments at the beginning and end of the study. Longitudinal analysis across groups revealed significant increase in frontal mean diffusivity (MD), indicating that DTI is sensitive to WM structural alterations over a 10-week interval. Further, group analysis demonstrated positive effects of training on the short-term changes. Participants in the training group showed a relative increase in fractional anisotropy (FA) compared with controls. Further, a significant relationship between memory improvement and change in FA was found, suggesting a possible functional significance of the reported changes. The training effect on FA seemed to be driven by a relative decrease in radial diffusivity, which might indicate a role for myelin-related processes in WM plasticity.
for the Karolinska Schizophrenia Project Consortium IMPORTANCE Between-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature.OBJECTIVES To compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. DESIGN, SETTING, AND PARTICIPANTSThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.