Close physical association of Ca1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation-contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the JM targeting of LTCCs is unexplored. Junctophilin 1 (JP1) and JP2 stabilize the JM by bridging the sarcolemmal and SR membranes. Here, we examined the roles of JPs in localization and function of LTCCs. Knockdown of JP1 or JP2 in cultured myotubes inhibited LTCC clustering at the JM and suppressed evoked Ca transients without disrupting JM structure. Coimmunoprecipitation and GST pull-down assays demonstrated that JPs physically interacted with 12-aa residues in the proximal C terminus of the Ca1.1. A JP1 mutant lacking the C terminus including the transmembrane domain (JP1ΔCT) interacted with the sarcolemmal/T-tubule membrane but not the SR membrane. Expression of this mutant in adult mouse muscles in vivo exerted a dominant-negative effect on endogenous JPs, impairing LTCC-RyR coupling at triads without disrupting JM morphology, and substantially reducing Ca transients without affecting SR Ca content. Moreover, the contractile force of the JP1ΔCT-expressed muscle was dramatically reduced compared with the control. Taken together, JPs recruit LTCCs to the JM through physical interaction and ensure robust ECC at triads in skeletal muscle.
In some forms of cardiac hypertrophy and failure, the gain of Ca(2+)-induced Ca(2+) release [CICR; i.e., the amount of Ca(2+) released from the sarcoplasmic reticulum normalized to Ca(2+) influx through L-type Ca(2+) channels (LTCCs)] decreases despite the normal whole cell LTCC current density, ryanodine receptor number, and sarcoplasmic reticulum Ca(2+) content. This decrease in CICR gain has been proposed to arise from a change in dyad architecture or derangement of the t-tubular (TT) structure. However, the activity of surface sarcolemmal LTCCs has been reported to increase despite the unaltered whole cell LTCC current density in failing human ventricular myocytes, indicating that the "decreased CICR gain" may reflect a decrease in the TT LTCC current density in heart failure. Thus, we analyzed LTCC currents of failing ventricular myocytes of mice chronically treated with isoproterenol (Iso). Although Iso-treated mice exhibited intact t-tubules and normal LTCC subunit expression, acute occlusion of t-tubules of isolated ventricular myocytes with osmotic shock (detubulation) revealed that the TT LTCC current density was halved in Iso-treated versus control myocytes. Pharmacological analysis indicated that kinases other than PKA or Ca(2+)/calmodulin-dependent protein kinase II insufficiently activated, whereas protein phosphatase 1/2A excessively suppressed, TT LTCCs in Iso-treated versus control myocytes. These results indicate that excessive β-adrenergic stimulation causes the decrease in TT LTCC current density by altering the regulation of TT LTCCs by protein kinases and phosphatases in heart failure. This phenomenon might underlie the decreased CICR gain in heart failure.
Rationale: Diabetic cardiomyopathy is accompanied by increased production of NADH, predominantly through oxidation of fatty acids and consequent increases in oxidative stress. The role of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme of the salvage pathway of NAD + synthesis, in the development of diabetic cardiomyopathy is poorly understood. Objective: We investigated the role of endogenous and exogenous Nampt during the development of diabetic cardiomyopathy in response to high fat diet (HFD) consumption and in the context of oxidative stress. Methods and Results: HFD consumption upregulated endogenous Nampt, and HFD-induced cardiac diastolic dysfunction, fibrosis, apoptosis and pro-inflammatory signaling were alleviated in transgenic mice with cardiac-specific overexpression of Nampt. The alleviation of diastolic dysfunction observed in these mice was abolished by inhibition of NADP(H) production via NAD kinase (NADK) inhibition. Nampt overexpression decreased the GSSG/GSH ratio, oxidation of thioredoxin 1 (Trx1) targets, dityrosine, and the accumulation of toxic lipids, including ceramides and diglycerides, in the presence of HFD consumption. Nampt overexpression upregulated not only NAD + but also NADP + and NADPH in the heart and in cultured cardiomyocytes, which in turn stimulated the GSH and Trx1 systems and alleviated oxidative stress in the heart induced by HFD consumption. In cultured cardiomyocytes, Nampt-induced upregulation of NADPH was abolished in the presence of NADK knockdown, whereas that of NAD + was not. Nampt overexpression attenuated H 2 O 2 -induced oxidative inhibition of Prdx1 and mTOR in an NADK-dependent manner in cultured cardiomyocytes. Nampt overexpression also attenuated H 2 O 2 -induced cell death, an effect that was partly abolished by inhibition of NADK, Trx1 or GSH synthesis. In contrast, oxidative stress and the development of diabetic cardiomyopathy in response to HFD consumption were exacerbated in Nampt +/- mice. Conclusions: Nampt-mediated production of NAD + protects against oxidative stress in part through the NADPH-dependent reducing system, thereby alleviating the development of diabetic cardiomyopathy in response to HFD consumption.
Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system, plays important roles in cardiovascular regulation in the perinatal period. Despite the well-known stimulatory effect of AngII on vascular contraction, little is known about regulation of contraction of the immature heart by AngII. Here we found that AngII significantly increased the peak amplitude of twitch Ca transients by robustly activating L-type Ca 1.2 Ca (Ca 1.2) channels in mouse immature but not mature cardiomyocytes. This response to AngII was mediated by AT receptors and β-arrestin2. A β-arrestin-biased AT receptor agonist was as effective as AngII in activating Ca 1.2 channels. Src-family tyrosine kinases (SFKs) and casein kinase 2α'β (CK2α'β) were sequentially activated when AngII activated Ca 1.2 channels. A cyclin-dependent kinase inhibitor, p27 (p27), inhibited CK2α'β, and AngII removed this inhibitory effect through phosphorylating tyrosine 88 of p27 via SFKs in cardiomyocytes. In a human embryonic kidney cell line, tsA201 cells, overexpression of CK2α'β but not c-Src directly activated recombinant Ca 1.2 channels composed of C-terminally truncated α , the distal C-terminus of α , β and α δ subunits, by phosphorylating threonine 1704 located at the interface between the proximal and the distal C-terminus of Ca 1.2α subunits. Co-immunoprecipitation revealed that Ca 1.2 channels, CK2α'β and p27 formed a macromolecular complex. Therefore, stimulation of AT receptors by AngII activates Ca 1.2 channels through β-arrestin2 and CK2α'β, thereby probably exerting a positive inotropic effect in the immature heart. Our results also indicated that β-arrestin-biased AT receptor agonists may be used as valuable therapeutics for paediatric heart failure in the future.
The heart utilizes multiple adaptive mechanisms to maintain pump function. Compensatory cardiac hypertrophy reduces wall stress and oxygen consumption, thereby protecting the heart against acute blood pressure elevation. The nuclear effector of the Hippo pathway, Yes-associated protein 1 (YAP), is activated and mediates compensatory cardiac hypertrophy in response to acute pressure overload (PO). In this study, YAP promoted glycolysis by upregulating glucose transporter 1 (GLUT1), which in turn caused accumulation of intermediates and metabolites of the glycolytic, auxiliary, and anaplerotic pathways during acute PO. Cardiac hypertrophy was inhibited and heart failure was exacerbated in mice with YAP haploinsufficiency in the presence of acute PO. However, normalization of GLUT1 rescued the detrimental phenotype. PO induced accumulation of glycolytic metabolites, including L-serine, L-aspartate, and malate, in a YAP-dependent manner, thereby promoting cardiac hypertrophy. YAP upregulated the GLUT1 gene through interaction with TEAD1 and HIF-1α in cardiomyocytes. Thus, YAP induces compensatory cardiac hypertrophy through activation of the Warburg effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.