In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
A single epithelial layer serves as the interface between the organism and the contents of the gastrointestinal tract, underlining the importance of regulating cellular viability despite an onslaught of pathogens, toxins, waste by-products, and cytokines. A balance between cellular proliferation and apoptosis is necessary to maintain this critical barrier. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD) and predispose to inflammation-associated neoplasia. This review focuses on the regulation of physiological apoptosis in development and homeostasis and on pathological apoptosis in intestinal disease, inflammation, and neoplasia, identifying remaining questions and areas of needed investigation.
TNF is a pleiotropic cytokine that activates both anti-and proapoptotic signaling pathways, with cell fate determined by the balance between these two pathways. Activation of ErbB family members, including EGF receptor (EGFR/ErbB1), promotes cell survival and regulates several signals that overlap with those stimulated by TNF. This study was undertaken to determine the effects of TNF on EGFR and ErbB2 activation and intestinal epithelial cell survival. Mice, young adult mouse colon epithelial cells, and EGFR knockout mouse colon epithelial cells were treated with TNF. Activation of EGFR, ErbB2, Akt, Src, and apoptosis were determined in vivo and in vitro. TNF stimulated EGFR phosphorylation in young adult mouse colon epithelial cells, and loss of EGFR expression or inhibition of kinase activity increased TNF-induced apoptosis, which was prevented in WT but not by kinase-inactive EGFR expression. Similarly, TNF injection stimulated apoptosis in EGFR-kinasedefective mice (EGFR wa2 ) compared with WT mice. TNF also activated ErbB2, and loss of ErbB2 expression increased TNF-induced apoptosis. Furthermore, Src-kinase activity and the expression of both EGFR and ErbB2 were required for TNF-induced cell survival. Akt was shown to be a downstream target of TNF-activated EGFR and ErbB2. These findings demonstrate that EGFR and ErbB2 are critical mediators of TNF-regulated antiapoptotic signals in intestinal epithelial cells. Given evidence for TNF signaling in the development of colitis-associated carcinoma, this observation has significant implications for understanding the role of EGFR in maintaining intestinal epithelial cell homeostasis during cytokinemediated inflammatory responses.
Cancer therapies targeting epidermal growth factor receptor (EGFR), such as small-molecule kinase inhibitors and monoclonal antibodies, have been developed as standard therapies for several cancers, such as non-small cell lung cancer, colorectal cancer, pancreatic cancer, breast cancer, and squamous cell carcinoma of the head and neck. Although these therapies can significantly prolong progression-free survival, curative effects are not often achieved because of intrinsic and/or acquired resistance. The resistance mechanisms to EGFR-targeted therapies can be categorized as resistant gene mutations, activation of alternative pathways, phenotypic transformation, and resistance to apoptotic cell death. Analysis of the processes that modulate EGFR signal transduction by EGFR-targeted inhibitors, such as tyrosine kinase inhibitors and monoclonal antibodies, has revealed new therapeutic opportunities and has elucidated novel mechanisms contributing to the discovery of more effective anticancer treatments. In this review, we discuss the roles of EGFR in cancer development, therapeutic strategies for targeting EGFR, and resistance mechanisms to EGFR-targeted therapies, with a focus on cancer therapies for individual patients.
We investigated the role of IL-17 family members IL-17A and IL-17F in the induction of chemokines in mouse cultured mesangial cells (SV40 MES 13 cells). We evaluated the expression of the chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) by ELISA and real-time RT-PCR (Q-PCR). Activation of MAPK was assessed by immunoblotting. IL-17RA and IL-17RC were inhibited by small interfering RNA (siRNA). We found that IL-17A or IL-17F stimulation of mesangial cells led to both a dose- and time-dependent increase in MCP-1 and MIP-2 release. This effect was dependent on mRNA transcription and protein translation. Both also enhanced TNF-alpha- and IL-1beta-mediated MCP-1 and MIP-2 release in the cells. Additionally, we observed that IL-17A and IL-17F induced MAPK (p38 MAPK, ERK1/2, and JNK) activation and that pharmacological inhibitors of p38 MAPK (SB203580) and ERK1/2 (U0126), but not JNK (SP600125), blocked the IL-17A/IL-17F-mediated MCP-1 and MIP-2 release. Mesangial cells expressed IL-17RA and IL-17RC, and the IL-17A-mediated MCP-1 and MIP-2 release was significantly blocked by soluble IL-17RA. Furthermore, inhibition of either IL-17RA or IL-17RC expression via siRNA led to significant reduction of IL-17A/IL-17F-stimulated chemokine production. We conclude that IL-17A and IL-17F induce the production of chemokines MCP-1 and MIP-2 via MAPK pathways (p38 MAPK and ERK1/2), as well as mRNA transcription and protein translation and have synergistic effects with TNF-alpha and IL-1beta in cultured mesangial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.