We analyzed demographic data from northern spotted owls (Strix occidentalis caurina) from 14 study areas in Washington, Oregon, and California for 1985-2003. The purpose of our analyses was to provide an assessment of the status and trends of northern spotted owl populations throughout most of their geographic range. The 14 study areas made up approximately 12% of the range of the subspecies and included federal, tribal, private, and mixed federal and private lands. The study areas also included all the major forest types that the subspecies inhabits. The analyses followed rigorous protocols that were developed a priori and were the result of extensive discussions and consensus among the authors. Our primary objectives were to estimate fecundity, apparent survival (/), and annual rate of population change (k) and to determine if there were any temporal trends in these population parameters. In addition to analyses of data from individual study areas, we conducted 2 meta-analyses on each demographic parameter. One meta-analysis was conducted on all 14 areas, and the other was restricted to the 8 areas that constituted the Effectiveness Monitoring Plan for northern spotted owls under the Northwest Forest Plan. The average number of years of reproductive data per study area was 14 (range ¼ 5-19), and the average number of recapture occasions per study area was 13 (range ¼ 4-18). Only 1 study area had ,12 years of data. Our results were based on 32,054 captures and resightings of 11,432 banded individuals for estimation of survival and 10,902 instances in which we documented the number of young produced by territorial females.The number of young fledged (NYF) per territorial female was analyzed by testing a suite of a priori models that included (1) effects of age, (2) linear or quadratic time trends, (3) presence of barred owls (Strix varia) in spotted owl territories, and (4) an even-odd year effect. The NYF varied among years on most study areas with a biennial cycle of high reproduction in even-numbered years and low reproduction in odd-numbered years. These cyclic fluctuations did not occur on all study areas, and the even-odd year effect waned during the last 5 years of the study. Fecundity was highest for adults (x¼0.372, SE¼0.029), lower for 2-year-olds (x¼0.208, SE¼0.032), and very low for 1-year-olds (x¼0.074, SE¼ 0.029). Fecundity was stable over time for 6 areas (Rainier, Olympic, Warm Springs, H. J. Andrews, Klamath, and Marin), declining for 6 areas (Wenatchee, Cle Elum, Oregon Coast Range, Southern Oregon Cascades, Northwest California, and Simpson), and slightly increasing for 2 areas (Tyee, Hoopa). We found little association between NYF and the proportion of northern spotted owl territories where barred owls were detected, although results were suggestive of a negative effect of barred owls on the Wenatchee and Olympic study areas. The meta-analysis on fecundity indicated substantial annual variability with no increasing or decreasing trends. Fecundity was highest in the mixed-conifer region of eas...
Dead organic matter is an important structural and functional element in natural forests, but its quantity, quality, and spatial distribution are greatly modified by intensive harvesting and management through forestry. From the perspective of conflicts with biodiversity, the most important changes are associated with reductions in the abundance of snags, cavity trees, and coarse-woody debris, all of which are well known as critical habitat elements for a wide range of indigenous species. Changes in the depth and quality of the forest floor of managed stands are also important for some species and guilds of wildlife. Resolution of this conflict between forestry and biodiversity will require the design and implementation of management systems that accommodate the critical habitat qualities associated with dead organic matter, particularly with large-dimension deadwood and cavities. This goal may be most effectively achieved by an integrated strategy that involves (i) basing forest-management planning on shifting-mosaic habitat models of stand harvesting and replacement, designed to ensure a continuous availability of sufficient areas of stands old enough to sustain habitat features associated with dead organic matter, along with (ii) the provision of protected areas of mature and older growth forest, associated with riparian buffers, deer yards, and nonharvested ecological reserves and other kinds of protected areas. The protected areas are necessary to accommodate those elements of biodiversity that cannot tolerate the conditions of managed stands.Key words: biodiversity, managed forests, plantations, old-growth forests, coarse-woody debris, cavity trees, snags.
Marker chromosomes containing active human neocentromeres have been described in individuals where the chromosomes are non-mosaic, suggesting that they are mitotically stable, but also in individuals where there is mosaicism, raising the possibility of neocentromere instability. We report two independently ascertained individuals who are mosaic for a supernumerary marker chromosome, shown by reverse chromosome painting to have an 8p origin, resulting in mosaicism for tetrasomy 8p23.1-->pter in the patient. The markers have a primary constriction but show no detectable centromeric alpha-satellite DNA. The marker in Patient 1 demonstrated no centromere protein CENP-B binding, but associated with nine different functionally critical centromere proteins. Investigation of peripheral blood lymphocytes from this patient on five separate occasions over a 13-year period showed 23-46% mosaicism for the marker chromosome with no decrease in incidence. In vitro investigation of primary and secondary sub-clones of a lymphoblast cell line derived from the patient demonstrated 100% stability of the marker chromosome indicating that neocentromere instability is unlikely to be responsible for the mosaicism in the patient. This and other available data support a general model of neocentromerization as a post-zygotic event, irrespective of whether the supernumerary chromosome fragment has arisen during meiosis or post-fertilization at mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.